cangen o fathemateg From Wikipedia, the free encyclopedia
Cangen o resymeg fathemategol sy'n ymwneud â phriodweddau setiau yw damcaniaeth setiau neu theori setiau; gellir ei disgrifio'n anffurfiol fel casgliadau o wrthrychau. yn ymwneud yn bennaf â'r gwrthrychau hynny sy'n berthnasol i fathemateg yn ei chyfanrwydd.
Eicon damcaniaeth setiau | |
Enghraifft o'r canlynol | maes o fewn mathemateg, damcaniaeth mathemategol |
---|---|
Rhan o | Mathematical logic, set theory, lattices and universal algebra, theory of sets, relations and functions |
Ffeiliau perthnasol ar Gomin Wicimedia |
Datblygwyd y ddamcaniaeth yn gyntaf gan Georg Cantor gyda chymorth Richard Dedekind yn y 1870au, yn seiliedig ar waith George Boole. Roedd y ddisgyblaeth yn arloesol gan iddi drin setiau anfeidraidd yn yr un modd â gwrthrychau mathemategol meidraidd.[1] Ar droad y ganrif, darganfuwyd nifer o groesosodiadau a gwrthfynegiadau yn y damcaniaeth wreiddiol, a elwir bellach yn ddull naïf. Felly, datblygodd felly sylfaen wirebol (acsiomatig) i ddamcaniaeth setiau, yn debyg i geometreg elfennol. O'r holl ddamcaniaethau setiau gwirebol y mwyaf adnabyddus yw'r system Zermelo–Fraenkel gyda'r wireb o ddewis. Mae'r systemau anffurfiol yr ymchwiliwyd iddynt yn ystod y cyfnod cynnar hwn yn mynd o dan yr enw damcaniaeth setiau naïf. Ar ôl darganfod paradocsau o fewn y ddamcaniaeth setiau naïf (megis paradocs Russell, paradocs Cantor a pharadocs Burali-Forti) cynigiwyd amryw o systemau gwirebol yn gynnar yn yr 20g, a'r mwyaf adnabyddus ohonynt yw ddamcaniaeth setiau Zermelo-Fraenkel.
Erbyn heddiw, defnyddir y ddamcaniaeth hon fel system sy'n sylfaenol i fathemateg, yn enwedig ar ffurf damcaniaeth setiau Zermelo-Fraenkel gyda'r wireb o ddewis.[2] Mae ddamcaniaeth setiau hefyd yn darparu'r fframwaith i theori yr anfeidredd, ac mae ganddo gymwysiadau amrywiol mewn gwyddoniaeth gyfrifiadurol (megis yn theori algebra perthynol), athroniaeth a semanteg ffurfiol. Mae ei apêl sylfaenol, ynghyd â’i baradocsau, ei oblygiadau ar gyfer y cysyniad o anfeidredd a’i gymwysiadau lluosog, wedi gwneud damcaniaeth setiau yn faes o ddiddordeb mawr i resymegwyr ac athronwyr mathemateg. Mae ymchwil gyfoes i damcaniaeth setiau yn ymdrin ag ystod eang o bynciau, yn amrywio o strwythur y llinell rif real i astudio cysondeb prifolion mawr.
Mae pynciau mathemategol fel arfer yn dod i'r amlwg ac yn esblygu trwy ryngweithio ymhlith llawer o ymchwilwyr. Fodd bynnag, sefydlwyd damcaniaeth setiau mewn un papur academaidd, ym 1874 gan yr Almaenwr Georg Cantor: "Ar Nodweddion y Casgliad o'r Holl Rifau Algebraidd Real" ("Ueber eine Eigenschaft des Inbegriffes aller reellen algebraischen Zahlen").[3][4]
Ers y 5g CC, gan ddechrau gyda'r mathemategydd Groegaidd Zeno o Elea yn y Gorllewin a mathemategwyr Indiaidd cynnar yn y Dwyrain, roedd mathemategwyr wedi cael trafferth gyda'r cysyniad o anfeidredd . Yn arbennig o nodedig mae gwaith Bernard Bolzano yn hanner cyntaf y 19eg ganrif.[5] Dechreuodd dealltwriaeth fodern o anfeidredd ym 1870-1874, a chafodd ei ysgogi gan waith Cantor mewn dadansoddi go iawn .[6] Dylanwadodd cyfarfod 1872 rhwng Cantor a Richard Dedekind ar feddwl Cantor, a daeth i ben gyda phapur Cantor yn 1874.
Ar y dechrau, polareiddwyd mathemategwyr y dydd, sef cyfoeswyr Cantor, yn llwyr, gyda Karl Weierstrass a Dedekind yn cefnogi Cantor, a Leopold Kronecker, (sydd bellach yn cael ei ystyried yn sylfaenydd adeiladaeth fathemategol) yn ei wrthwynebu. Damcaniaeth setiau Cantor enillodd y frwydr yn y pen draw, oherwydd defnyddioldeb cysyniadau Cantor, fel ei 'gyfatebiaeth un i un' ymhlith setiau, ei brawf bod mwy o rifau real na chyfanrifau, ac "anfeidredd yr anfeidredd" ("paradwys Cantor") sy'n deillio o weithredu'r set pŵer. Arweiniodd hyn at yr erthygl dylanwadol "Mengenlehre", a gyfrannwyd ym 1898 gan Arthur Schoenflies i wyddoniadur Klein.
Daeth y don nesaf o gyffro mewn damcaniaeth setiau tua 1900, pan ddarganfuwyd bod rhai dehongliadau o'r theori wedi arwain at sawl gwrthddywediad, o'r enw gwrthinomau neu baradocsau. Daeth y CymroBertrand Russell ac Ernst Zermelo o hyd i'r paradocs symlaf a mwyaf adnabyddus, a elwir bellach yn baradocs Russell: ystyriwch "set yr holl setiau nad ydyn nhw'n aelodau ohonyn nhw eu hunain", sy'n arwain at wrthddywediad gan fod yn rhaid iddo fod yn ddau beth: yn aelod ohono'i hun ac nid a aelod ohono'i hun. Yn 1899, roedd Cantor ei hun wedi gofyn y cwestiwn "Beth yw rhif prifol set yr holl setiau?", a thrwy hyn wedi sicrhau paradocs cysylltiedig. Defnyddiodd Russell ei baradocs fel thema yn ei adolygiad ym 1903 o fathemateg gyfandirol yn ei The Principles of Mathematics. Yn hytrach na'r term a osodwyd, defnyddiodd Russell y term Dosbarth, a ddefnyddiwyd yn fwy technegol wedi hynny.
Ym 1906, ymddangosodd y term set yn y llyfr Theory of Sets of Points[7] gan ŵr a gwraig William Henry Young a Grace Chisholm Young, a gyhoeddwyd gan Cambridge University Press .
Roedd momentwm y trafodaethau ynghylch damcaniaeth setiau yn golygu nad anghofiwyd y ddadl ar y paradocsau. Arweiniodd gwaith Zermelo ym 1908 a gwaith Abraham Fraenkel a Thoralf Skolem ym 1922 at y set o wirebau ZFC, a ddaeth yn set o wirebau a ddefnyddir amlaf ar gyfer damcaniaeth setiau. Dangosodd gwaith dadansoddwyr, fel Henri Lebesgue, ddefnyddioldeb mathemategol y ddamcaniaeth setiau, sydd bellach wedi ei blethu i wead mathemategol fodern. Defnyddir damcaniaeth setiau yn gyffredin fel system sylfaen, er mewn rhai meysydd - fel geometreg algebraidd a thopoleg algebraidd - credir bod y theori categori yn sylfaen fwy addas.
Mae damcaniaeth setiau yn dechrau gyda pherthynas ddeuaidd sylfaenol rhwng gwrthrych o a set A, Os yw o yn aelod (neu'n elfen) o A, defnyddir y nodiant o ∈ A. Disgrifir set trwy restru elfennau'r set, wedi'u gwahanu gan atalnodau, neu grwpio elfennau tebyg o fewn {}.[8] Gan fod setiau yn wrthrychau, gall y berthynas rhwng yr aelodau hefyd gysylltu setiau a'i gilydd.
Perthynas ddeuaidd ddeilliedig rhwng dwy set yw'r berthynas rhwng yr is-setiau, a elwir hefyd yn gynhwysiant y set (set inclusion\). Os yw holl aelodau set A hefyd yn aelodau o set B, yna mae A yn is-set o B, a ddynodir fel A ⊆ B. Er enghraifft, mae {1, 2} yn is-set o {1, 2, 3}, ac felly hefyd {2} ond nid yw {1, 4}. Fel yr awgrymir gan y diffiniad hwn, mae set yn is-set ohono'i hun. Ar gyfer achosion lle mae'r posibilrwydd hwn yn anaddas neu lle byddai'n gwneud synnwyr ei wrthod, diffinnir y term fel is-set briodol. Mae A yn is- set briodol o B os ac yn unig os yw A yn is-set o B, ond nid yw A yn hafal i B. Hefyd, mae 1, 2, a 3 yn aelodau (elfennau) o'r set {1, 2, 3}, ond nid ydyn nhw'n is-setiau ohoni; ac yn eu tro, nid yw'r is-setiau, fel {1}, yn aelodau o'r set {1, 2, 3}.
Yn yr un modd ag y mae rhifyddeg yn cynnwys gweithrediadau deuaidd ar rifau, mae damcaniaeth setiau yn cynnwys gweithrediadau deuaidd ar setiau.[9] Mae'r canlynol yn rhestr rannol ohonynt:
Ymhlith y setiau pwysicaf y mae'r set o rifau naturiol, y set o rifau real a'r set wag - y set unigryw sy'n cynnwys dim elfennau. Weithiau gelwir y set wag yn set nwl,[11] er bod yr enw hwn yn amwys a gall arwain at sawl dehongliad.
Mae set yn bur os yw ei holl aelodau'n setiau, ac mae pob aelod o'i aelodau'n setiau.. ac ati. Er enghraifft, mae'r set {{}} sy'n cynnwys y set wag yn unig yn set bur nad-yw'n-wag. Mewn damcaniaeth setiau fodern, mae'n gyffredin cyfyngu sylw i setiau pur bydysawd von Neumann, ac mae llawer o systemau damcaniaeth setiau gwirebol wedi'u cynllunio i wirebu'r setiau pur yn unig. Mae yna lawer o fanteision technegol i'r cyfyngiad hwn, ac ychydig o gyffredinolrwydd yn cael ei golli, oherwydd yn y bôn gellir modelu pob cysyniad mathemategol gan setiau pur. Mae setiau ym mydysawd von Neumann wedi'u trefnu'n hierarchaeth gronnus (cumulative hierarchy), yn seiliedig ar ba mor ddwfn y mae eu haelodau, aelodau ei aelodau, ac ati yn nythu. Neilltuir trefnolion bob set yn yr hierarchaeth hon (trwy anwythiad trawsffiniol) , a elwir ei reng. Diffinnir rheng y set bur fel y trefnolyn lleiaf sy'n uwch na rheng unrhyw un o'i elfennau. Er enghraifft, rhoddir safle 0 i'r set wag, tra bod y set {{}} (sy'n cynnwys y set wag yn unig) yn cael ei phenodi i safle 1. Ar gyfer pob trefnolyn , diffinnir set i gynnwys pob set bur gyda rheng llai na . Dynodir y bydysawd von Neumann gyfan fel .
Gellir astudio damcaniaeth setiau elfennol yn anffurfiol ac yn reddfol, ac felly gellir ei dysgu mewn ysgolion cynradd gan ddefnyddio diagramau Venn. Mae'r dull greddfol yn cymryd yn ganiataol y gellir ffurfio set ddosbarth o'r holl wrthrychau sy'n bodloni unrhyw amod diffiniol penodol. Mae'r dybiaeth hon yn arwain at baradocsau, a'r symlaf a'r mwyaf adnabyddus ohonynt yw paradocs Russell a pharadocs Burali-Forti. Dyfeisiwyd damcaniaeth setiau gwirebol yn wreiddiol i gael gwared ar y paradocsau ym myd damcaniaeth setiau.[note 1]
Gellir diffinio llawer o gysyniadau mathemategol yn union gan ddefnyddio cysyniadau damcaniaethol penodol yn unig. Er enghraifft, gellir diffinio strwythurau mathemategol mor amrywiol â graffiau, maniffoldiau, cylchoedd, gofodau fector, ac algebrâu perthynol i gyd fel setiau sy'n bodloni priodweddau gwirebol, amrywiol. Mae cywerthedd a pherthynas trefn (order relations) yn hollbresennol mewn mathemateg, a gellir disgrifio theori perthynas mathemategol mewn damcaniaeth setiau.
Fel a nodwyd yn barod, mae damcaniaeth setiau hefyd yn system sylfaen addawol ar gyfer llawer o fathemateg. Ers cyhoeddi cyfrol gyntaf Principia Mathematica gan Bertrand Russell yn 1910, honnwyd y gellir deillio’r mwyafrif (neu hyd yn oed) o ddamcaniaethau mathemategol gan ddefnyddio set o wirebau a ddyluniwyd yn briodol ar gyfer y ddamcaniaeth setiau, ynghyd â llawer o ddiffiniadau, gan ddefnyddio rhesymeg gorchymyn cyntaf neu ail-drefn. . Er enghraifft, gellir deillio priodweddau'r rhifau naturiol a rhifau real o fewn damcaniaeth setiau, oherwydd gellir nodi pob system rif gyda set o ddosbarthiadau cywerth o dan berthynas cywerthedd addas, sydd a'i faes yn set anfeidrol.
Mae damcaniaeth setiau fel sylfaen ar gyfer dadansoddi mathemategol, topoleg, algebra haniaethol, a mathemateg arwahanol (discrete mathematics) yn ddadleuol yn yr un modd; mae mathemategwyr yn derbyn (mewn egwyddor) y gall theoremau yn y meysydd hyn ddeillio o'r diffiniadau perthnasol a gwirebau damcaniaeth setiau. Fodd bynnag, erys mai ychydig o ddeilliadau llawn o theoremau mathemategol cymhlyg o ddamcaniaeth setiau sydd wedi'u dilysu'n ffurfiol, gan fod deilliadau ffurfiol o'r fath yn aml yn llawer hirach na'r proflenni iaith naturiol y mae mathemategwyr yar hyn o bryd yn eu cyflwyno. Mae un prosiect gwirio, Metamath, yn cynnwys deilliadau wedi'u hysgrifennu gan bobl ac wedi'u gwirio gan gyfrifiadur, o fwy na 12,000 o theoremau gan ddechrau o ddamcaniaeth setiau ZFC, rhesymeg trefn gyntaf a rhesymeg osodiadol.
Mae damcaniaeth setiau yn faes ymchwil mawr mewn mathemateg, gyda llawer o is-feysydd cydberthynol.
Mae damcaniaeth setiau gyfuniadol yn ymwneud ag estyn cyfuniadau cyfyngedig i setiau anfeidrol, ac mae'n cynnwys astudio rhifyddeg prifol ac astudio estyniadau i theorem Ramsey ee theorem Erdős-Rado. Mae damcaniaeth setiau estyniad dwbl (DEST) yn damcaniaeth setiau gwirebol a gynigiwyd gan Andrzej Kisielewicz sy'n cynnwys dau aelod perthynol ar wahân ar fydysawd setiau.
Damcaniaeth set ddisgrifiadol yw'r astudiaeth o is-setiau o'r llinell real ac, yn fwy cyffredinol, is-setiau o ofodau Pwylaidd. Mae'n dechrau gyda'r astudiaeth o ddosbarthiadau pwynt (pointclasses) yn hierarchaeth Borel ac yn ymestyn i astudio hierarchaethau mwy cymhleth fel yr hierarchaeth dafluniol ac hierarchaeth Wadge. Gellir sefydlu llawer o briodweddau setiau Borel yn ZFC, ond mae profi bod yr eiddo hyn yn dal ar gyfer setiau mwy cymhleth yn gofyn am axiomau ychwanegol sy'n gysylltiedig â phenderfyniaeth a chardinaliaid mawr.
Mewn damcaniaeth setiau fel y diffiniodd Cantor a'i wirebu gan Zermelo a Fraenkel, mae gwrthrych naill ai'n aelod o set ai peidio. Mewn damcaniaeth setiau niwlog llaciwyd yr amod hwn gan Lotfi A. Zadeh. Oherwydd hyn, mae gan wrthrych rywfaint o aelodaeth mewn set, nifer rhwng 0 ac 1. Er enghraifft, mae graddfa aelodaeth person o fewn y set o "bobl dal" yn fwy hyblyg nag ateb ie neu na syml a gall fod yn rhif go iawn fel 0.75.
Roedd y mathemategydd Cymreig Mary Wynne Warner (22 Mehefin 1932 – 1 Ebrill 1998) yn arbenigo mewn mathemateg niwlog (fuzzy mathematics).[12][13] Nododd ei hysgrif goffa ym Mwletin Cymdeithas Fathemategol Llundain mai topoleg niwlog oedd "y maes lle'r oedd hi'n un o'r arloeswyr ac fe'i cydnabyddir fel un o'r bobl flaenllaw dros y tri deg mlynedd ddiwethaf."[14]
Mae prifolyn mawr (large cardinal) yn rhifolyn gydag phriodweddau ychwanegol. Astudir llawer o briodweddau o'r fath, gan gynnwys rhifolion anhygyrch, rhifolion mesuradwy a llawer mwy. Mae'r priodweddau hyn fel rheol yn awgrymu bod yn rhaid i'r rhifolyn fod yn fawr iawn. Hynny yw, mae'r prifolion mawr yn fath penodol o briodwedd o rifau prifol trawsffiniol ac maent, fel yr awgryma'r enw, yn gyffredinol yn "fawr" (er enghraifft, yn fwy na'r α lleiaf fel α=ωα). Ni ellir profi'r cynnig bod rhifolion o'r fath yn bodoli yn y gwirebu (axiomatization) mwyaf cyffredin o theori setiau, sef ZFC, a gellir ystyried cynigion o'r fath fel ffyrdd o fesur "faint" y tu hwnt i ZFC sydd angen tybio y gellir profi'r rhai o'r canlyniadau a ddymunir. Mewn geiriau eraill, gellir eu gweld, yn ymadrodd Dana Scott, fel meintioli'r ffaith "os ydych chi eisiau mwy mae'n rhaid i chi dybio mwy" ("if you want more you have to assume more").[15]
Mae yna gonfensiwn bras y gellir nodi canlyniadau y gellir eu profi o ZFC yn unig heb ragdybiaethau, ond os yw'r prawf yn gofyn am ragdybiaethau eraill (megis bodolaeth y prifolion mawr), dylid nodi'r rhain. Mae p'un a yw hyn yn gonfensiwn ieithyddol, neu'n rhywbeth mwy, yn bwynt dadleuol ymhlith ysgolion athronyddol gwahanol.
Mae'r prifoliyn mawr gwirebol yn wireb sy'n nodi bod gan y prifolyn neu'r prifolion rywfaint o briodweddau'r prifolyn mawr penodol.
Mae penderfyniaeth (determinacy) yn cyfeirio at y ffaith, o dan ragdybiaethau priodol, bod rhai gemau dau chwaraewr o wybodaeth berffaith yn cael eu pennu o'r dechrau yn yr ystyr bod yn rhaid i un chwaraewr fod â strategaeth fuddugol.[16][17] Mae bodolaeth y strategaethau hyn yn arwain at ganlyniadau pwysig mewn theori set ddisgrifiadol, gan fod y dybiaeth bod dosbarth ehangach o gemau yn aml yn awgrymu y bydd gan ddosbarth ehangach o setiau briodwedd topolegol. Mae wireb benderfyniaeth (axiom of determinacy) yn wrthrych pwysig a astudir yn helaeth; er ei fod yn anghydnaws â'r wireb o ddewis, mae wireb hon yn ei awgrymu, bod holl is-setiau'r llinell real yn ymddwyn yn dda (yn benodol, yn fesuradwy a chyda'r priodwedd set perffaith). Gellir defnyddio'r wireb benderfyniaeth i brofi bod gan graddau Wadge strwythur cain.[18][19][20]
Wrth i ddamcaniaeth setiau ennill ei blwyf fel sylfaen ar gyfer mathemateg fodern, bu cefnogaeth i'r syniad o gyflwyno hanfodion y ddamcaniaeth setiau naïf yn y blynyddoedd cynnar.
Yn yr UD yn y 1960au, nod yr arbrawf 'Math Newydd' (New Math) oedd dysgu damcaniaeth setiau sylfaenol, ymhlith cysyniadau haniaethol eraill, i ddisgyblion cynradd, ond cafodd ei feirniadu'n hallt gan lawer. Dilynwyd hyn gan faes llafur mathemateg rhai ysgolion Ewropeaidd, ac ar hyn o bryd mae'n cynnwys y pwnc ar wahanol lefelau ym mhob gradd ac oedran. Defnyddir diagramau Venn yn eang i egluro perthnasoedd setiau-theoretig sylfaenol i fyfyrwyr ysgolion cynradd (er i John Venn eu dyfeisio'n wreiddiol fel rhan o weithdrefn i asesu dilysrwydd casgliadau mewn term rhesymeg).
Defnyddir damcaniaeth setiau i gyflwyno myfyrwyr i weithredwyr rhesymegol (NID, AC, NEU), a disgrifiadau semantig o setiau (ee "misoedd gan ddechrau gyda'r llythyren A"), a allai fod yn ddefnyddiol wrth ddysgu rhaglennu cyfrifiadurol, gan fod rhesymeg boolean yn cael ei ddefnyddio mewn amryw o ieithoedd rhaglennu.[21] Yn yr un modd, mae setiau a gwrthrychau eraill a gesglir ee aml-setiau (multisets) a rhestrau, yn fathau o ddata cyffredin mewn gwyddoniaeth gyfrifiadurol a rhaglennu.
Yn ogystal â hynny, cyfeirir yn aml at setiau mewn addysgu mathemategol wrth siarad am wahanol fathau o rifau (N, Z, R, ...), ac wrth ddiffinio ffwythiant mathemategol fel perthynas o un set (y parth) i set arall (yr ystod).
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.