ব্রহ্মগুপ্তের অভেদ

উইকিপিডিয়া থেকে, বিনামূল্যে একটি বিশ্বকোষ

নির্দিষ্ট এর জন্য আকারে প্রকাশ করা যায় এরূপ যেকোন দুটি সংখ্যার গুণফল যে সংখ্যাটি সেটাও আকারের হওয়ার ব্যাপারটিই বীজগণিতে ব্রহ্মগুপ্তের অভেদ নামে পরিচিত। অন্যভাবে বলা যায়, এ ধরনের সংখ্যাগুলো নিয়ে যে সেট পাওয়া যায় তা গুণনের অধীনে একটি বদ্ধ সেট। বিশেষভাবে:

এদুটি সমীকরণের প্রত্যেককে সমীকরণের উভয় পক্ষে সম্প্রসারণের মাধ্যমে যাচাই করা যায়। তদুপরি b এর পরিবর্তে  b নিয়ে (1) নং হতে (2) নং কিংবা (2) নং (1) নং সমীকরণ পাওয়া যাবে।

পূর্ণ সংখ্যার বলয় এবং অমূলদ সংখ্যার বলয় উভয় ক্ষেত্রে আরও সাধারণভাবে বলতে গেলে যেকোন বিনিময় বলয়ের ক্ষেত্রে এই অভেদটি খাটে।

ইতিহাস

ব্রহ্মগুপ্তের এই অভেদটি তথাকথিত ফিবোনাচ্চি অভেদ যেখানে n=1 তার একটি সাধারণিকরণ যা প্রকৃতপক্ষে ডিওফ্যান্টাসের লেখা অ্যারিথমেটিকে (III, 19) খুঁজে পাওয়া যায়। অভেদটি ভারতীয় গণিতবিদজ্যোতির্বিজ্ঞানী ব্রহ্মগুপ্ত (৫৯৮৬৬৮) কর্তৃক পুনঃআবিষ্কৃত হয়; তিনি এর সাধারণ রূপ দেন এবং তার ব্রহ্মস্ফুটসিদ্ধান্তে তার এক আলোচনা বা গবেষণা যাকে এখন পেল সমীকরণ নামে অভিহিত করা হয় তাতে এর প্রয়োগ করেন। আল ফাজারী ব্রহ্মস্ফুটসিদ্ধান্ত পুস্তকটি সংস্কৃত থেকে আরবি ভাষায় অনুবাদ করেন, পর্যায়ক্রমে যা ১১২৬ সালে ল্যাটিনে ভাষান্তর করা হয়।[] অভেদটি পরবর্তী সময়ে ১২২৫ সালে ফিবোনাচ্চির রচিত লিব্যার কুয়াদরাতোরুমে (বর্গ সংখ্যার পুস্তক) দেখা যায়।

পেল সমীকরণে প্রয়োগ

সারাংশ
প্রসঙ্গ

আসল যে প্রেক্ষাপটে ব্রহ্মগুপ্ত তার আবিষ্কারটির প্রয়োগ ঘটান পরে তা পেল সমীকরণ x2  Ny2 = 1 নামে পরিচিতি পায়। এবার অভেদটির নিম্নোক্ত আকারটি দেখা যাক:

অভেদের এই রূপটি ব্যবহার করে তিনি (x1, y1, k1) এবং (x2, y2, k2) ত্রয়ীসমূহ প্রণয়নে সক্ষম হন যেগুলো আবার ছিল নতুন আরেকটি ত্রয়ীর উৎপাদনের নিমিত্তে x2  Ny2 = k এর সমাধান। নতুন ত্রয়ীটি হল:

Not only did this give a way to generate infinitely many solutions to x2  Ny2 = 1 starting with one solution, but also, by dividing such a composition by k1k2, integer or "nearly integer" solutions could often be obtained. পেল সমীকরণটি সমাধানের জন্য দ্বিতীয় ভাস্কর ১১৫০ সালে চক্রবাল পদ্ধতি নামের যে সাধারণ উপায়টি বাতলে দেন সেটাও ছিল ব্রহ্মগুপ্তের এই অভেদ ভিত্তিক।[]

আরও পড়ুন

তথ্যসূত্র

বহিঃসংযোগ

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.