শীর্ষ প্রশ্ন
সময়রেখা
চ্যাট
প্রসঙ্গ
ব্রহ্মগুপ্তের সূত্র
উইকিপিডিয়া থেকে, বিনামূল্যে একটি বিশ্বকোষ
Remove ads
ইউক্লিডীয় জ্যামিতিতে কোন বৃত্তীয় চতুর্ভুজের বাহু চারটির দৈর্ঘ্য দেওয়া থাকলে ব্রহ্মগুপ্তের সূত্র ব্যবহার করে এর ক্ষেত্রফল নির্ণয় করা যায়। বৃত্তীয় চতুর্ভুজ হল সেই চতুর্ভুজ যার শীর্ষ বিন্দু চারটি কোন বৃত্তের পরিধির উপর অবস্থান করে।
সূত্র
সারাংশ
প্রসঙ্গ
যদি কোন বৃত্তীয় চতুর্ভুজের চার বাহুর দৈর্ঘ্য a, b, c, d হয় তাহলে ব্রহ্মগুপ্তের সূত্রানুসারে সেই চতুর্ভুজের ক্ষেত্রফল K হবে,
যেখানে s হল চতুর্ভুজটির অর্ধপরিসীমা যা নিম্নরূপে সংজ্ঞায়িত—
এই সূত্রটি হল ত্রিভুজের ক্ষেত্রফল নির্ণয় করার হেরনের সূত্রের সাধারণ রূপ। যেকোন ত্রিভুজকে ‘চার বাহুর মধ্যে এক বাহুর দৈর্ঘ্য শূন্য এরূপ একটি চতুর্ভুজ’ হিসেবে বিবেচনা করা যেতে পারে। এই দৃষ্টিভঙ্গির আলোকে কে শূন্যে হ্রাস করা হলে বৃত্তীয় চতুর্ভুজটি একটি বৃত্তীয় ত্রিভুজে (যেকোন ত্রিভুজকেই বৃত্তে অন্তর্লিখিত করা যায়) রূপান্তরিত হবে এবং ব্রহ্মগুপ্তের সূত্রটি হেরনের সূত্রের সরল রূপ গ্রহণ করবে।
যদি পরিবৃত্তের অর্ধপরিসীমা ব্যবহৃত না হয় তাহলে সূত্রটি হবে—
এর সমতূল্য আরেকটি সংস্করণ হল—
Remove ads
প্রমাণ
সারাংশ
প্রসঙ্গ

ত্রিকোণমিতির সাহায্যে প্রমাণ
ডানদিকে অঙ্কিত চিত্রটির সাহায্যে ব্রহ্মগুপ্তের সূত্রটি প্রমাণ করা হবে। এখানে চতুর্ভুজটির ক্ষেত্রফল হবে কর্ণ দ্বারা বিভক্ত দুটি ত্রিভুজ এবং এর ক্ষেত্রফলের সমষ্টির সমান।
কিন্তু যেহেতু ABCD বৃত্তস্থ চতুর্ভুজ, তাই
ত্রিভুজ এবং এর সাধারণ বাহু এর উপর কোসাইনের সূত্র প্রয়োগ করে পাই,
কোণ এবং সম্পূরক হওয়ায় বসিয়ে পাই,
ক্ষেত্রফলের সমীকরণে এই সমীকরণটি বসিয়ে পাই,
সমীকরণের ডানপক্ষটি দুটি বর্গের বিয়োগফল। সেজন্য এটিকে আকারে ভেঙে পাওয়া যায়,
প্রথম বন্ধনী তুলে দিয়ে সমীকরণটিকে সাজালে পাওয়া যায়,
এবার অর্ধপরিসীমার রাশি সমীকরণে বসিয়ে পাওয়া যায়,
উভয়পক্ষকে বর্গমূল করলে নিন্মলিখিত সমীকরণটি পাওয়া যায়
ত্রিকোণমিতিক প্রয়োগ ছাড়া প্রমাণ
বিকল্প হিসেবে অত্রিকোণমিতিক প্রমাণের ক্ষেত্রে একই ত্রিভুজে হেরনের ত্রিভুজ ক্ষেত্রফল নির্ণয়ের দুটি সূত্রের প্রয়োগ করা হয়।[১]
Remove ads
বৃত্তস্থ নয় এমন চতুর্ভুজে প্রয়োগ
সারাংশ
প্রসঙ্গ
বৃত্তস্থ নয় এমন চতুর্ভুজের ক্ষেত্রে চতুর্ভুজটির বিপরীত কোন দুটি জানা থাকলে ব্রহ্মগুপ্তের সূত্রটিকে নিম্নরূপভাবে সম্প্রসারণ করা যাবে—
যেখানে θ হল দুটি বিপরীত কোণদ্বয়ের সমষ্টির অর্ধেক। অপর বিপরীত কোণ যুগল নেওয়া হলে এদের অর্ধ-সমষ্টি হবে ()। যেহেতু হওয়ায় আমরা পাই তাই কোন বিপরীত কোণ যুগল বিবেচনা করা হচ্ছে তা এখানে অপ্রাসঙ্গিক কারণ। এই অতি সাধারণ সমীকরণটি ব্রেটস্নাইডারের সূত্র নামে পরিচিত।
বৃত্তীয় চতুর্ভুজের এবং অবধারিতভাবে অন্তর্লিখিত কোণসমূহেরও ধর্ম এই যে, যেকোনো বৃত্তীয় চতুর্ভুজের বিপরীতমুখী কোণদ্বয়ের সমষ্টি সর্বদা দুই সমকোণের সমান ()। যার ফলস্বরূপ বৃত্তীয় চতুর্ভুজের বিপরীত কোণদ্বয়ের অর্ধ-সমষ্টি θ হবে এক সমকোণের সমান ()। সুতরাং এখান থেকে আমরা পাব—
যা ব্রহ্মগুপ্তের সূত্রের মৌলিক রূপ। চারটি নির্দিষ্ট বাহু দিয়ে যতগুলো চতুর্ভুজ গঠন করা যায় তাদের মধ্যে বৃত্তীয় চতুর্ভুজটির ক্ষেত্রফল যে সম্ভবপরভাবে সর্বোচ্চ হবে তা পরবর্তী সমীকরণটি থেকে এটা পাওয়া যায়।
আমেরিকান গণিতবিদ জুলিয়ান কুলিজ এই সমীকরণটি প্রমাণ করেন। একই সাথে এর মাধ্যমে তিনি যেকোনো সাধারণ কুব্জ চতুর্ভুজের ক্ষেত্রফল নির্ণয়ের নিম্নোক্ত সমীকরণটি প্রতিপাদন করেন:[২]
যেখানে এবং হল চতুর্ভুজটির কর্ণদ্বয়ের দৈর্ঘ্য। টলেমির উপপাদ্য অনুসারে বৃত্তীয় চতুর্ভুজে এবং কুলিজের এই সূত্রটিকেও সঙ্কুচিত করে ব্রহ্মগুপ্তের সূত্রে রূপান্তর করা যায়।
Remove ads
সম্পর্কিত উপপাদ্য
- হেরনের সূত্রটি হল ব্রহ্মগুপ্তের সূত্রের একটি বিশেষ রূপ যেখানে চতুর্ভুজটির একটি বাহুর দৈর্ঘ্য শূন্য ধরা হয়।
- কোসাইনের সূত্রকে পিথাগোরাসের উপপাদ্যে সম্প্রসারিত করা যায় যেরূপভাবে ব্রহ্মগুপ্তের সূত্রের সাধারণ কাঠামো ও সম্প্রসারিত কাঠমো দুটির মধ্যকার সম্পর্ক তেমনই।
- মেইলে সহ আরও অনেকের দেওয়া বৃত্তের জন্য সাধারণ বহুপদীর ক্রমবর্ধমান আবদ্ধ জটিল সূত্রসমূহও বিদ্যমান রয়েছে।[৩]
তথ্যসূত্র
বহিঃসংযোগ
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads