математик даими, әйләнәнең оҙонлоғоноң уның диаметрына сағыштырмаһына тигеҙ булған һан From Wikipedia, the free encyclopedia
(«пи» тип әйтелә) — математик даими, әйләнәнең оҙонлоғоноң уның диаметрына сағыштырмаһына тигеҙ булған һан[K 1]. Грек алфавитының «π» хәрефе менән тамғалана.
Иррациональ һандар ζ(3) — ρ — √2 — √3 — √5 — ln 2 — φ,Φ — ψ — α,δ — e — и π | |
Иҫәпләү системаһы | һанына баһа |
Унарлы | 3,1415926535897932384626433832795… |
Икеле | 11,00100100001111110110… |
Ун алтылы | 3,243F6A8885A308D31319… |
Алтмышарлы | 3; 08 29 44 00 47 25 53 07 … |
Рациональ яҡынайыуҙар | 22⁄7, 179⁄57, 223⁄71, 333⁄106, 355⁄113, 103 993⁄33 102 (теүәллеге арта барыу тәртибендә һанап кителгән) |
Өҙлөкһөҙ кәсер | [3; 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, 2, 1, 1, … ]
(Был өҙлөкһөҙ кәсер периодлы түгел. Һыҙыҡлы нотацияла яҙылған) |
Тригонометрия | радиан = 180° |
3,1415926535 8979323846 2643383279 5028841971 6939937510
5820974944 5923078164 0628620899 8628034825 3421170679
8214808651 3282306647 0938446095 5058223172 5359408128
4811174502 8410270193 8521105559 6446229489 5493038196
4428810975 6659334461 2847564823 3786783165 2712019091
4564856692 3460348610 4543266482 1339360726 0249141273
7245870066 0631558817 4881520920 9628292540 9171536436
7892590360 0113305305 4882046652 1384146951 9415116094
3305727036 5759591953 0921861173 8193261179 3105118548
0744623799 6274956735 1885752724 8912279381 8301194912
9833673362 4406566430 8602139494 6395224737 1907021798
6094370277 0539217176 2931767523 8467481846 7669405132
0005681271 4526356082 7785771342 7577896091 7363717872
1468440901 2249534301 4654958537 1050792279 6892589235
4201995611 2129021960 8640344181 5981362977 4771309960
5187072113 4999999837 2978049951 0597317328 1609631859
5024459455 3469083026 4252230825 3344685035 2619311881
7101000313 7838752886 5875332083 8142061717 7669147303
5982534904 2875546873 1159562863 8823537875 9375195778
1857780532 1712268066 1300192787 6611195909 2164201989
…
һаны иррациональ, йәғни уның ҡиммәте кәсере күренешендә теүәл күрһәтелә алмай, бында һәм — бөтөн һандар. Ошонан сығып, уның унарлы яҙылышы тамамланмай (сикһеҙ) һәм периодлы була алмай. һанының иррационаллеген беренсе булып 1761 йылда Иоганн Ламберт[2] тангенсты өҙлөкһөҙ кәсергә тарҡатыу юлы менән иҫбатлай. 1794 йылда Лежандр һәм һандарының иррационаллегенең ҡәтғиерәк иҫбатланышын килтерә.
— транцендент һан, йәғни ул коэффициенттары бөтөн һандар булған ниндәй ҙә булһа тигеҙләмәнең тамыры була алмай. һанының транцендентлығын 1882 йылда Кёнигсберг, ә аҙаҡ Мюнхен университеты профессоры Линдеман иҫбатлай. Иҫбатлауҙы Феликс Клейн 1894 йылда ябайлаштыра[3]. Евклид геометрияһында түңәрәктең майҙаны һәм әйләнә оҙонлоғо һанының функциялары булғанлыҡтан, һанының транцендентлығын иҫбатлау 2,5 мең йылдан артыҡ һуҙылған түңәрәктең квадратураһын төҙөргә маташыуҙарға сик ҡуя.
1934 йылда Гельфонд[4] һанының транцендентлығын иҫбатлай. 1996 йылда Юрий Нестеренко теләһә ниндәй натураль өсөн һәм һандары алгебрак бәйләнешһеҙ икәнен иҫбатлай, бынан, айырым алғанда,[5][6] һәм һандарының транцендентлығы килеп сыға.
периодтар ҡулсаһының элементы булып тора (тимәк, иҫәпләнмәле һәм арифметик һан). Ләкин периодтар ҡулсаһына инәме икәне билдәһеҙ.
һанын иҫәпләү өсөн күп формулалар билдәле:
Был һандың грек хәрефе менән тамғаланышын беренсе булып 1706 йылда Британия математигы Джонс файҙаланған[9], ә Леонард Эйлерҙың 1737 йылдағы хеҙмәттәренән һуң ул дөйөм ҡабул ителә. Был тамғалау περιφέρεια әйләнә, периферия һәм περίμετρος периметр тигән грек һүҙҙәренең баш хәрефенән алынған [10].
һанын өйрәнеү һәм уның ҡиммәтен аныҡлау бөтә математиканың үҫеше менән параллель бара һәм бер нисә мең йыллыҡты алып тора. Тәүҙә геометрия ҡарашынан сығып өйрәнелә, аҙаҡ математик анализдың XVII быуатта үҫеше был һандың универсаль булыуын күрһәтә.
Әйләнәнең оҙонлоғоноң диаметрға сағыштырмаһы теләһә ниндәй әйләнә өсөн дә бер төрлө булыуы, һәм был сағыштырма 3-тән бер аҙ ҙур булыуы, Боронғо Мысыр, Вавилон, Боронғо Һиндостан һәм Боронғо Греция геометрҙарына ла билдәле була, иң боронғо яҡынайыуҙары б. э. тиклем өсөнсө мең йыллыҡҡа ҡарай.
Боронғо Вавилонда һанын өскә тигеҙ итеп алғандар. Уны [11] түбәндәге формула аша асыҡлағандар: түңәрәктең майҙаны әйләнә оҙонлоғоноң квадратының 12-гә бүлендегенә тигеҙ. Билдәле булған иң теүәл яҡынайыуҙарының иң тәүгеләре яҡынса б. э. тиклем 1900-сө йылдар менән даталана: был 25/8 = 3,125 (Боронғо Вавилон батшалығы осорондағы Суза балсыҡ табличкаһы)[12] һәм 256/81 ≈ 3,16 (Урта батшалыҡ осорондағы мысыр Ахмес папирусы); ике ҡиммәттең дә ысын ҡиммәтенән айырмаһы 1 %-тан ҙур түгел. Ведалар тексы «Шатапатха-брахмана» һанының яҡынайыуы сифатында 339/108 ≈ 3,139 кәсерен бирә.
Ҡытай философы һәм ғалимы Чжан Хэн, II быуатта, һаны өсөн ике эквивалент тәҡдим итә: 92/29 ≈ 3,1724 һәм ≈ 3,1622. Джайнизмдың б. э. тиклем V—VI быуаттарҙа яҙылған изге китаптарынан, ул ваҡытта Һиндостанда ла һанын тигеҙ итеп ҡабул итеүҙәре күренә[13]
Архимед, ихтимал, беренсе булып һанын иҫәпләү өсөн математик ысул тәҡдим иткән. Бының өсөн ул әйләнәгә төҙөк күпмөйөштәр ҡамаған һәм уның тирәләй ҡамаусы төҙөк күпмөйөштәр төҙөгән. Әйләнәнең диаметрын берәмек итеп алып, Архимед ҡамалған күпмөйөштөң периметрын әйләнә оҙонлоғоноң түбәнге баһаһы, ә ҡамаусы күпмөйөш периметрын юғары баһаһы итеп ҡараған. Төҙөк 96-мөйөш ҡарап, Архимед баһаһын тапҡан һәм һанын яҡынса иҫәпләү өсөн табылған сиктәрҙең юғарыһын тәҡдим иткән: — 22/7 ≈ 3,142857142857143.
Европа мәҙәниәтендә артабанғы яҡынайыу астроном Клавдий Птолемей менән бәйле (яҡынса 100 — яҡынса 170), ул ярты градус аҙымы менән хордалар таблицаһын төҙөгән, был уға өсөн 377/120 яҡынлауын табырға мөмкинлек бирә, ул яҡынса Птолемей иҫәпләгән берәмек әйләнәгә ҡамалған 720-мөйөш периметрының яртыһына тигеҙ була[14]. Леонардо Пизанский (Фибоначчи) «Practica Geometriae» китабында (яҡынса 1220 й.), күрәһең, Птолемейҙың яҡынлауын өсөн түбәнге сик тип уйлап, үҙенең яҡынлауын килтерә[15] — 864/275. Ләкин ул Птолемейҙыҡына ҡарағанда хөртөрәк була, сөнки Фибоначчи ярты градуслы хорданың оҙонлоғон тапҡанда ҙурыраҡ яҡҡа яңылыша, һөҙөмтәлә 377/120 яҡынлауы өсөн юғары сик булып сыға.
Һиндостанда Ариабхата һәм Бхаскара 3,1416 яҡынлауын ҡулланғандар. Варахамихира VI быуатта «Панча-сиддхантика»ла яҡынлауын ҡуллана.
Б. э. 265 йылында, Вэй батшалығынан математик Лю Хуэй һанын теләһә ниндәй дәрәжәлә теүәллек менән иҫәпләү өсөн ябай һәм теүәл Ҡалып:Translation2 тәҡдим итә. Ул үҙ аллы 3072-мөйөш өсөн иҫәпләү яһай һәм өсөн түбәндәге принцип буйынса яҡынса ҡиммәт таба:
Һуңғараҡ Лю Хуэй һанын тиҙ иҫәпләү ысулын уйлап таба һәм тик 96-мөйөш ярҙамында 3,1416 яҡынса ҡиммәтен таба, ул бер бер артлы килгән күпмөйөштәрҙең майҙандарының айырмаһы знаменателе 4-кә тигеҙ булған геометрик прогрессия төҙөй тигән факттың өҫтөнлөгөн ҡулланған.
480-се йылдарҙа ҡытай математигы Цзу Чунчжи ≈ 355/113 булыуын күрһәткән, һәм 12288-мөйөшкә ҡарата ҡулланылған Лю Хуэй алгоритмын файҙаланып 3,1415926 < < 3,1415927 икәнен күрһәткән. Был ҡиммәт артабанғы 900 йыл дауамында һанының иң теүәл яҡынлауы булып ҡалған.
II меңйыллыҡҡа тиклем һанының 10-дан артыҡ булмаған цифры билдәле була. һанын өйрәнеүҙә артабанғы ҙур уңыштар математик анализ үҫеше, бигерәк тә, рәттең яраҡлы һандағы быуындарын ҡушып, һанын теләһә ниндәй теүәллек менән иҫәпләргә мөмкинлек биреүсе рәттәрҙе асыу менән бәйле.
1400-се йылдарҙа Сангамаграманан Мадхава шундай рәттәрҙең береһен таба:
Был һөҙөмтә Мадхава — Лейбниц рәте, йәки Грегори — Лейбниц рәте (ул өр яңынан Джеймс Грегори һәм Готфрид Лейбниц тарафынан XVII быуатта табылғандан һуң) булараҡ билдәле. Ләкин был рәт һанына бик яй йыйылыусан, был практикала һандың күп цифрҙарын иҫәпләүҙең ҡатмарлылығына килтерә — Архимед баһаһын яҡшыртыу өсөн яҡынса рәттең 4000 быуынын ҡушырға кәрәк. Әммә Мадхава был рәтте
рәтенә үҙгәртеп, һандың яҙылышында 11 цифрын дөрөҫ табып, -не 3,14159265359 тип иҫәпләй алған. Был рекорд 1424 йылда фарсы математигы Джамшид әл-Каши тарафынан еңелә, ул үҙенең «Трактат об окружности» исемле хеҙмәтендә һанының 17 цифрын килтерә, шуларҙың 16-һы дөрөҫ була.
Архимед заманынан һуң Европаның беренсе индергән иң ҙур өлөшө голланд математигы Людольф ван Цейлендың өлөшө була, ул һанын 20 унарлы цифры менән иҫәпләү өсөн ун йыл сарыф итә (был һөҙөмтә 1596 йылда баҫылып сыға). Архимед ысулын ҡулланып, ул икеләтеүҙе n-мөйөшкә тиклем еткерә, бында n = 60·229. Үҙенең һөҙөмтәләрен «Об окружности» китабында яҙып («Van den Circkel»), Лудольф уны ошо һүҙҙәр менән тамамлай: «Кемдең теләге бар, артабан дауам итһен әйҙә». Вафат булғандан һуң уның ҡулъяҙмаларында һанының тағы ла 15 теүәл цифры асыҡланғаны беленә. Лудольф үҙе тапҡан тамғалар уның ҡәбер өҫтөнә ҡуйылған ташына уйып яҙылһын тип васыят әйтә. Уның хөрмәтенә һанын ҡайһы берҙә «лудольф һаны» йәки «Лудольф константаһы» тип атайҙар.
Лудольф һаны — һанының 32 дөрөҫ унарлы тамғаһы менән яҡынса ҡиммәте.
Сама менән шул уҡ ваҡытта Европала сикһеҙ рәттәрҙе анализлау һәм билдәләү ысулдары үҫешә башлай. Шундай тәүге тәҡдим Франсуа Виет тарафынан 1593 йылда табылған, π һанының яҡынайыуы өсөн Виет формулаһы[en] була:
Валлис формулаһы икенсе билдәле һөҙөмтә була:
ул Джон Валлис тарафынан 1655 йылда сығарыла.
Оҡшаш ҡабатландыҡтар:
Яңы осорҙа һанын иҫәпләү өсөн тождестволарға нигеҙләнгән аналитик ысулдар ҡулланыла. Юғарыла һанап кителгән формулалар иҫәпләү маҡсатында бик ҡулай түгелдәр, сөнки йә яй йыйылыусан рәттәрҙе ҡулланалар, йәки ҡатмарлы квадрат тамыр алыуҙы талап итәләр.
π һанын (шулай уҡ натураль логарифмдарҙы һәм башҡа функцияларҙы) табыуҙың үҙе үҫтергән рәттәр теорияһына һәм математик анализаға нигеҙләнгән беренсе нәтижәле һәм заманса ысулын, -ҙе рәткә тарҡатып, 1676 йылда Исаак Ньютон Ольденбургҡа икенсе хатында бирә[16]. Был ысул нигеҙендә тағы ла нәтижәлерәк формуланы 1706 йылда Джон Мэчин (John Machin) таба
Арктангенсты Тейлор рәтенә тарҡатып
һанын ҙурыраҡ теүәллек менән иҫәпләргә яраҡлы тиҙ йыйылыусан рәт алырға мөмкин.
Бындай типтағы формулалар хәҙерге ваҡытта Мэчин формулалары булараҡ билдәлеләр, бер нисә бер-бер артлы рекордтар ҡуйыу өсөн файҙаланылалар һәм компьютер дәүерендә һанын тиҙ иҫәпләү өсөн билдәле булған ысулдарҙың иң яҡшылары булып ҡалалар. Иоганн Дазеның (en.Johann Dase) феноменаль счётчигы менән ҙур рекорд ҡуйыла, ул 1844 йылда Гаусс күрһәтмәһе буйынса Мэчин формулаһын һанының 200 цифрын иҫәпләү өсөн ҡуллана . XIX быуат аҙағына иң яҡшы һөҙөмтә инглиз Уильям Шенкс тарафынан алына, уның 707 цифрҙы иҫәпләү өсөн 15 йылы сарыф ителә, хаталаныу арҡаһында тәүге 527 цифры ғына дөрөҫ була. Шундай хаталарҙан ҡотолоу өсөн, ундай төрҙәге хәҙерге иҫәпләүҙәр ике тапҡыр башҡарылалар. Әгәр һөҙөмтәләр тап килһә, улар юғары ихтималлыҡ менән дөрөҫ булалар. Шенкстың хатаһын 1948 йылда тәүге компьютерҙарҙың береһе асыҡлай; ул үҙе бер нисә сәғәт эсендә һанының 808 тамғаһын иҫәпләй.
XVIII быуатта теоретик ҡаҙаныштар һанының асылына төшөнөүгә килтерә, быға тик һанлы иҫәпләүҙәр ярҙамында ғына өлгәшеү мөмкин булмаҫ ине. Иоганн Генрих Ламберт 1761 йылда һанының иррационаллеген иҫбатлай, ә Адриен Мари Лежандр 1774 йылда һанының иррационаллеген иҫбатлай. 1735 йылда, Леонард Эйлер билдәле Базель проблемаһын — тигеҙ булып сыҡҡан
Лежандр ҙа, Эйлер ҙа трансцендент булырға мөмкин тип фаразлайҙар, был аҙаҡҡы сиктә 1882 йылда Фердинанд фон Линдеман тарафынан иҫбат ителә.
Уильям Джонстың «Обозрение достижений математики» китабы (Synopsis Palmoriorum Mathesios, 1706 йыл) беренсе булып был константаны тамғалау өсөн грек хәрефе -ны ҡулланыуға индергән тип иҫәпләнә, ләкин был тамғалау Леонард Эйлер 1737 йылда уны ҡабул иткәс (йәки бәйһеҙ рәүештә үҙе уға килгәс) дөйөм танылыу ала[10]. Эйлер былай тип яҙа: «Практиканы һиҙелерлек еңелләштерергә мөмкинлек биргән ярашлы кәкренең оҙонлоғон йәки яҫы фигураның майҙанын табыу өсөн күп башҡа ысулдар бар; мәҫәлән, түңәрәктә диаметр әйләнәнең оҙонлоғона 1 -гә сағыштырылған кеүек сағыштырыла».
Цифрлы техника дәүере XX быуатта иҫәпләү рекордтарының барлыҡҡа килеү тиҙлеген арттырыуға килтерҙе. Джон фон Нейман һәм башҡалар 1949 йылда ЭНИАК-ты һанының 2037 тамғаһын иҫәпләү өсөн ҡулланалар, был 70 сәғәт ваҡытты ала. 1961 йылда Дэниел Шенкс IBM 7090-да 100000 тамғаны иҫәпләй, ә миллион билдәһен 1973 йылда үтеп кителә[K 2]. Бындай прогресс аппарат менән тиҙ тәьмин итеү арҡаһында ғына түгел, ә яңы алгоритмдар арҡаһында ла мөмкин була.
XX быуат башында һинд математигы Сриниваса Рамануджан өсөн бик күп яңы формулалар таба, уларҙың ҡайһы берҙәре үҙҙәренең элегантлығы һәм математик тәрәнлеге арҡаһында билдәле булып китәләр. Был формулаларҙың береһе — рәт:
Ир туғандар Чудновскийҙар тарафынан 1987 йылда уға оҡшаш формула табыла:
ул рәттең һәр быуынына яҡынса 14 цифр бирә. Чудновскийҙар был формуланы 1980-се йылдар аҙағында һанын иҫәпләүҙә, формула ярҙамында 1989 йылда табылған унарлы тарҡатыуҙың 1 011 196 691 цифрын да индереп, бер нисә рекорд ҡуйыу өсөн ҡулланалар.
Хәҙерге заман рекордтары ҡуйыусы суперкомпьютерҙарҙан айырмалы рәүештә, был формула персональ компьютерҙарҙа һанын иҫәпләүсе программаларҙа ҡулланыла.
Эҙмә-эҙлелек, һәр артабанғы быуыны менән теүәллекте ғәҙәттә билдәле бер дәүмәлгә арттырған бер ваҡытта, шундай итератив алгоритмдар бар, улар һәр аҙымда дөрөҫ цифрҙар һанын ҡабатлайҙар, ләкин шундай һәр аҙымда юғары иҫәпләүҙәр сарыф итеүҙе талап итәләр. Был тәңгәлдә 1975 йылда ҙур алға китеш була, Ричард Брент һәм Юджин Саламин бер береһенә бәйһеҙ рәүештә Брент — Саламин алгоритымын асалар, ул тик арифметиканы ҡулланып, һәр аҙымда билдәле тамғалар һанын икеләтә[17]. Алгоритм башланғыс ҡиммәттәрҙе
һәм итерацияларҙы ҡуйыуҙан тора:
an һәм bn етерлек яҡын булғанға тиклем
Ул саҡта баһаһы
Был схеманы ҡулланғанда 25 итерация 45 миллион унарлы тамғаны табыу өсөн етә. Һәр аҙымда теүәллекте дүрт тапҡыр арттырыусы оҡшаш алгоритм Джонатан Боруэйн тарафынан табыла[18]. Был ысулдар ярҙамында Ясумаса Канада һәм уның төркөмө, 1980 йылдан башлап, һанын иҫәпләүҙең күпселек рекордтарын ҡуялар, 1999 йылда 206 158 430 000 тамғаға тиклем. 2002 йылда Канада һәм уның төркөмө яңы рекорд ҡуя — 1 241 100 000 000 унарлы тамға.
Канаданың алдағы күпселек рекордтары Брент — Саламин алгоритымы ярҙамында ҡуйылһа ла, 2002 йылдағы иҫәпләүҙә Мэчинов тибындағы ике формула ҡулланыла, улар яйыраҡ эшләй, ләкин хәтерҙе ҡулланыуҙы киҫкен кәметәләр.
Иҫәпләү 64 быуындан торған, оператив хәтере 1 терабайт булған Hitachi суперкомпьютерында башҡарыла, ул секундына 2 триллион операция башҡарырға һәләтле була.
1997 йылда Саймон Плафф тарафынан асылған һәм ул беренсе тапҡыр баҫылып сыҡҡан мәҡәлә авторҙары буйынса аталған Бэйли — Боруэйн — Плафф формулаһы яҡын аралағы мөһим үҫеш булып тора[19]. Был формула,
ул һанының теләһә ниндәй конкрет ун алтылы йәки икеле цифрын алдағы цифрҙарҙы иҫәпләмәйенсә табырға мөмкинлек биреүе менән иғтибарға лайыҡ[19]. 1998 йылдан 2000 йылға тиклем PiHex төркөмләнгән проект һанының квадриллионынсы битын иҫәпләү өсөн ББП Фабрис Белларҙың үҙгәртелгән формулаһын ҡуллана, ул нуль булып сыға[20].
2006 йылда Саймон Плафф, PSLQ ҡулланып, матур формулалар рәте таба[21]. q = eπ булһын, ти, ул саҡта
һәм түбәндәге күренештәге башҡалары
бында q = eπ, k — таҡ һан, һәм a, b, c — рациональ һандар. Әгәр k — 4m + 3 күренешендә булһа, был формула айырыуса ябай күренештә була:
знаменателе — ҡабатлашыусыларға яҡшы тарҡатып булған һан булған рациональ p өсөн, формуланың ҡәтғи иҫбатланышы әлегә юҡ.
2009 йылдың авгусында Японияның Цукуба университеты ғалимдары 2 576 980 377 524 унарлы разрядтан торған эҙмә-эҙлелекте иҫәпләп сығаралар[22].
2009 йылдың 31 декабрендә француз программисы Фабрис Беллар персональ компьютерҙа 2 699 999 990 000 унарлы разрядтан торған эҙмә-эҙлелек иҫәпләй[23].
2011 йылдың 19 октябрендә Александр Йи һәм Сигэру Кондо өтөрҙән һуң 10 триллион цифр теүәллегендә эҙмә-эҙлелекте иҫәпләйҙәр[24][25].
2013 йылдың 28 декабрендә АҠШ студенты Александр Йи һәм Япония тикшеренеүсеһе Сигэру Кондо (ja|近藤茂) өтөрҙән һуң 12,1 триллион цифрға тиклем аныҡлыҡ менән эҙмә-эҙлелекте иҫәпләйҙәр[26].
Голландия математигы Брауэр XX быуаттың беренсе яртыһында, һанының унарлы тарҡалмаһында эҙмә-эҙлелеген эҙләүҙе мәғәнәһеҙ мәсьәлә миҫалы сифатында килтерә — уның фекеренсә, бының өсөн кәрәк булған теүәллеккә бер ҡасан да өлгәшеп булмаясаҡ. XX быуат аҙағында был эҙмә-эҙлелек табыла, ул өтөрҙән һуң 17 387 594 880-се тамғанан башлана[27].
Һан | Түңәрәкләнгән ҡиммәте | Теүәллек (разрядтарҙың тап килеүенең) |
3,14159265… | ||
3,14285714… | өтөрҙән һуң 2 разряд | |
3,14166667… | өтөрҙән һуң 3 разряд | |
3,14159292… | өтөрҙән һуң 6 разряд |
Цифр | Нисә тапҡыр осрай |
---|---|
0 | 20 000 030 841 |
1 | 19 999 914 711 |
2 | 20 000 013 697 |
3 | 20 000 069 393 |
4 | 19 999 921 691 |
5 | 19 999 917 053 |
6 | 19 999 881 515 |
7 | 19 999 967 594 |
8 | 20 000 291 044 |
9 | 19 999 869 180 |
Ләкин ҡәтғи иҫбатланышы юҡ.
Бер тигеҙ алыҫлыҡта ятҡан тура һыҙыҡтар менән һыҙыҡлатылған яҫылыҡҡа ирекле рәүештә оҙонлоғо күрше тура һыҙыҡтар араһындағы алыҫлыҡҡа тигеҙ булған энәне шулай итеп ташлайҙар, һәр ташлағанда энә йә тура һыҙыҡтарҙы киҫмәй, йәки берәүһен генә киҫә. Энәнең ниндәй ҙә булһа һыҙыҡ менән киҫешеүҙәре һанының дөйөм ташлауҙар һанына сағыштырмаһы, ташлауҙар һаны сикһеҙлеккә тиклем артҡанда, һанына яҡыная икәнен иҫбат итеп була[35]. Был энә ысулы ихтималлыҡ теорияһына нигеҙләнә һәм Монте-Карло ысулының нигеҙендә ята[36].
π һанының 8—11 тамғаһын хәтерләү өсөн шиғырҙар:
|
|
Хәтерҙә ҡалдырыуға шиғыр үлсәмен һаҡлау ярҙам итергә мөмкин:
Три, четырнадцать, пятнадцать, девять два, шесть пять, три пять
Восемь девять, семь и девять, три два, три восемь, сорок шесть
Два шесть четыре, три три восемь, три два семь девять, пять ноль два
Восемь восемь и четыре, девятнадцать, семь, один
π һанының беренсе цифрҙары һүҙҙәрҙәге хәрефтәр һаны рәүешендә шифрланған шиғырҙар бар:
|
|
Бындай шиғырҙар реформаға тиклемге орфографияла ла булғандар. Мәҫәлән, артабанғы шиғырҙы Түбәнге Новгород гимназияһы уҡытыусыһы Шенрок яҙған[37]:
Кто и шутя и скоро пожелаетъ
Пи узнать, число ужъ знаетъ.
Ҡалып:Trivia
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.