Loading AI tools
来自维基百科,自由的百科全书
在數學的集合論中,馬丁公理(Martin's axiom)是一個由唐纳德·A·馬丁和羅伯特·M·梭羅維引進的[1]公理,這公理獨立於慣常的、帶有選擇公理的策梅洛-弗蘭克爾集合論(ZFC)。這公理在連續統假設成立的狀況下成立,但也與否定連續統假設的ZFC公理系統相容。
用較不正式的講法,馬丁公理講的是任何小於連續統的基數,其行為會與大體類似。這公理背後的想法可藉由研究羅修娃-西葛斯基引理的證明得知;而這是用以控制特定力迫論證的其中一個原則。
給定任意的基數,我們可以定義一個如下的陳述,並將這陳述給記做:
由於這是一個使得不成立的ZFC定理之故,因此馬丁公理可表述如下:
馬丁公理(MA):對於任意的,成立
在這情況(應用可數鏈條件)下,一個反鏈是的子集,且這子集使得的任意兩個元素不兼容(若在偏序中存在一個低於兩者的共通元素,則說兩個元素是兼容的),而這與樹等情況下的反鏈是不同的。
為真,而這即是羅修娃-西葛斯基引理。
為假:是一個緊緻豪斯多夫空間,因此是個可分空間並滿足可數鏈條件。這集合沒有孤立點,因此其中的點是無處稠密的;但這集合是這麼多的點的聯集。(也可參見下述的與等價的條件)
以下陳述與等價:
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.