Remove ads
来自维基百科,自由的百科全书
在抽象幾何學中,立方體半形是一種僅由一半數量的立方體面構成的抽象多面體。這個抽象多面體與立方體類似,它們的每個頂點都是3個正方形的公共頂點,然而立方體有6個面,而立方體半形僅有3個面;同時,這個立體無法嵌入在三維歐幾里得空間中[2]。在拓樸學上,其可以視為正四面體的皮特里對偶[3]。
立方體半形由3個面、6條邊和4個頂點組成,每個面都是正方形,且每個頂點都是3個正方形的公共頂點,在施萊夫利符號中可以用{4,3}/2或{4,3}3來表示,其中{4,3}代表且每個頂點都是3個正方形的公共頂點[4],然而{4,3}代表正常的立方體,即正六面體,因此用「/2」符號來表示所有元素都僅有立方體的一半數量[5][6]。
立方體半形的對偶多面體為正八面體半形,這個在更高維度的類比結構中同樣成立,即維超方形半形(施萊夫利符號:)的對偶多胞形為維正軸形半形(施萊夫利符號:)。[5][6]
特別地,這個立體的每個面皆與相鄰面共用2條邊,且每個面都包含了立體中所有頂點。一般而言,多胞形的面可以透過其點集來決定[7],也就是說,一般不會存在2個相異面點集合相同的情況,因此這個立體是面無法僅從點集來確定的抽象多面體的例子之一。
立方體半形可從有公共頂點的半個立方體(即三個面,下圖的I、II、III)開始構造。此形狀的邊界為一個六邊形,然後下一步是將此六條邊分成三組對邊(下圖的4、5、6),將每對邊(沿同一方向,例如順時針)黏合,就得到立方體半形[4]。這樣的構建方式使用了正四面體的骨架[8],同時其構成的面不會共面[4],其與正四面體的皮特里多邊形相同,其骨架在圖論中對應到四面體圖,可以視為K4完全圖嵌入於射影平面上的結果。[4]
立方體半形 |
K4完全圖 |
皮特里四面體 |
立方體半形可被視為是射影多面體 (可視為由三個四邊形構成的實射影平面鑲嵌)[9]。要將其視覺化,可以透過將射影平面構築為一個半球體,並過半球體的邊界連接對蹠點,同時確保連接的部分能將半球體平均分割成三等份。
立方體半形和半立方體不同,立方體半形是一個射影多面體,且無法嵌入在三維歐幾里得空間中[2];而半立方體是一個位於三維歐幾里德空間中的普通多面體。 雖然它們的頂點數皆為立方體的一半,立方體半形可以視為立方體的商空間,而半立方體則不是,半立方體只有頂點為立方體頂點的子集。
皮特里四面體是正四面體的皮特里對偶[1][10]。在拓樸學上,這個結構與立方體半形同構,並可以視為立方體半形的一種具象化方式[4]。相對的立方體半形的皮特里對偶為正四面體,這意味著其皮特里多邊形可以與半立方體(此例對應正四面體)的面對應[11]。也就是說,立方體半形和正四面體互為皮特里對偶。[1][10]
皮特里四面體由3個面、6條邊和4個頂點組成,其中,3個面皆為正四面體的皮特里多邊形。正四面體的皮特里多邊形是一個扭歪四邊形。[12]由於皮特里四面體由扭歪四邊形組成[13],因此無法確立其封閉範圍,故無法計算其表面積和體積。[14]
皮特里四面體是一個不可定向且歐拉示性數為1的幾何結構[1]。
正四面體的皮特里多邊形 |
構成皮特里立方體的扭歪四邊形面 |
皮特里四面體的頂點、邊和面數皆為立方體的一半,因此皮特里四面體可以被立方體(的表面)二重覆蓋[1]。皮特里四面體的對偶多面體為八面體半形[1]。皮特里四面體可以截半為截半立方體半形[1][15]。
皮特里四面體 |
以正則地區圖表示的皮特里四面體 |
皮特里四面體的對偶多面體以正則地區圖表示 |
立方體半形是正多面體的半形體之一,其他也是正多面體的半形之結構有[6]:
立方體半形 |
八面體半形 |
十二面體半形 |
二十面體半形 |
立方體半形與皮特里四面體拓樸同構,其可以視為是正多面體的皮特里對偶之一。其他也是正多面體的皮特里對偶之幾何結構有:[16]
皮特里四面體 |
皮特里立方體 |
皮特里八面體 |
皮特里十二面體 |
皮特里二十面體 |
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.