Loading AI tools
来自维基百科,自由的百科全书
電子顯微鏡(英語:electron microscope,簡稱電鏡或電顯)是使用電子來展示物件的內部或表面的顯微鏡。
高速的電子的波長比可見光的波長短(波粒二象性),而顯微鏡的分辨率受其使用的波長的限制,因此電子顯微鏡的分辨率(約0.2奈米)遠高於光學顯微鏡的分辨率(約200奈米)。[1]
電子顯微鏡的主要組成部分是:
通过改变物镜的透镜系统人们可以直接放大物镜的焦点的像。由此人们可以获得电子衍射像。使用这个像可以分析样本的晶体结构。
在能量过滤穿透式电子显微镜(Energy Filtered Transmission Electron Microscopy,EFTEM)中人们测量电子通过样本时的速度改变。由此可以推测出样本的化学组成,比如化学元素在样本内的分布。
假如观察的是透过样本的扫描电子的话,那么这种显微镜被称为扫描透射电子显微镜(Scanning Transmission Electron Microscopy,STEM)。
冷冻电镜,就是用于扫描电镜的超低温冷冻制样及传输技术(Cryo-SEM)可实现直接观察液体、半液体及对电子束敏感的样品,如生物、高分子材料等。样品经过超低温冷冻、断裂、镀膜制样(喷金/喷碳)等处理后,通过冷冻传输系统放入电镜内的冷台(温度可至-185℃)即可进行观察。其中,快速冷冻技术可使水在低温状态下呈玻璃态,减少冰晶的产生,从而不影响样品本身结构,冷冻传输系统保证在低温状态下对样品进行电镜观察。
在使用透視電子顯微鏡觀察生物樣品前樣品必須被預先處理。隨不同研究要求的需要科學家使用不同的處理方法。
使用透視電子顯微鏡觀察金屬前樣本要被切成非常薄的薄片(約0.1毫米),然後使用電解擦亮繼續使得金屬變薄,最後在樣本中心往往形成一個洞,電子可以在這個洞附近穿過那裡非常薄的金屬。無法使用電解擦亮的金屬或不導電或導電性能不好的物質如硅等一般首先被用機械方式磨薄後使用離子打擊的方法繼續加工。
為防止不導電的樣品在掃描電子顯微鏡中積累靜電它們的表面必須覆蓋一層導電層。
在電子顯微鏡中樣本必須在真空中觀察,因此無法觀察活樣本。在處理樣本時可能會產生樣本本來沒有的結構,這加劇了此後分析圖像的難度。由於透射電子顯微鏡只能觀察非常薄的樣本,而有可能物質表面的結構與物質內部的結構不同。此外電子束可能通過碰撞和加熱破壞樣本。還有,電子顯微鏡觀察到的樣本都是沒有顏色的。
現在的最新技術可以在電子顯微鏡中觀察濕的樣本和不涂導電層的樣本(環境掃描電子顯微鏡,Environmental Scanning Electron Microscopes,ESEM)。假如事先對樣本的情況比較清晰的話則可以基本上進行不破壞的觀察。
此外電子顯微鏡購買和維護的價格都比光學顯微鏡高出許多。
1926年漢斯·布什研製了第一個磁力電子透鏡。1931年恩斯特·魯斯卡和馬克斯·克諾爾研製了第一台透視電子顯微鏡。展示這台顯微鏡時使用的還不是透視的樣本,而是一個金屬格。1986年魯斯卡為此獲得諾貝爾物理學獎。1938年他在西門子公司研製了第一台商業電子顯微鏡。
1934年鋨酸被提議用來加強圖像的對比度。1937年第一台掃描透射電子顯微鏡推出。
一開始研製電子顯微鏡最主要的目的是顯示在光學顯微鏡中無法分辨的病原體如病毒等。1949年可投射的金屬薄片出現後材料學對電子顯微鏡的興趣大增。
1960年代透射電子顯微鏡的加速電壓越來越高來透視越來越厚的物質。這個時期電子顯微鏡達到了可以分辨原子的能力。
1980年代人們能夠使用掃描電子顯微鏡觀察濕樣本。1990年代中電腦越來越多地用來分析電子顯微鏡的圖像,同時使用電腦也可以控制越來越複雜的透鏡系統,同時電子顯微鏡的操作越來越簡單。
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.