一般而言,給定在區域
V
′
{\displaystyle \mathbb {V} '}
內的連續電荷分佈,其電偶極矩為
p
(
r
)
=
∫
V
′
ρ
(
r
′
)
(
r
′
−
r
)
d
3
r
′
{\displaystyle \mathbf {p} (\mathbf {r} )=\int _{\mathbb {V} '}\rho (\mathbf {r} ')\,(\mathbf {r} '-\mathbf {r} )\ d^{3}\mathbf {r} '}
;
其中,
r
{\displaystyle \mathbf {r} }
是場位置,
r
′
{\displaystyle \mathbf {r} '}
是源位置,
ρ
(
r
′
)
{\displaystyle \rho (\mathbf {r} ')}
是在源位置
r
′
{\displaystyle \mathbf {r} '}
的電荷密度 ,
d
3
r
′
{\displaystyle d^{3}\mathbf {r} '}
是微小體元素。
設定
N
{\displaystyle N}
個點電荷 ,則電荷密度是
N
{\displaystyle N}
個狄拉克δ函數 的總和:
ρ
(
r
′
)
=
∑
i
=
1
N
q
i
δ
(
r
′
−
r
i
′
)
{\displaystyle \rho (\mathbf {r} ')=\sum _{i=1}^{N}\,q_{i}\delta (\mathbf {r} '-\mathbf {r} _{i}')}
;
其中,
r
i
′
{\displaystyle \mathbf {r} _{i}'}
是點電荷
q
i
{\displaystyle q_{i}}
的位置向量。
這些點電荷的電偶極矩為
p
(
r
)
=
∑
i
=
1
N
q
i
∫
V
′
δ
(
r
′
−
r
i
′
)
(
r
′
−
r
)
d
3
r
′
=
∑
i
=
1
N
q
i
(
r
i
′
−
r
)
{\displaystyle \mathbf {p} (\mathbf {r} )=\sum _{i=1}^{N}\,q_{i}\int _{\mathbb {V} '}\delta (\mathbf {r} '-\mathbf {r} _{i}')\,(\mathbf {r} '-\mathbf {r} )\ d^{3}\mathbf {r} '=\sum _{i=1}^{N}\,q_{i}(\mathbf {r} _{i}'-\mathbf {r} )}
。
對於兩個同電量異性的電荷案例,標記正電荷與負電荷的位置分別為
r
+
′
{\displaystyle \mathbf {r} _{+}'}
、
r
−
′
{\displaystyle \mathbf {r} _{-}'}
,則電偶極矩為
p
(
r
)
=
q
(
r
+
′
−
r
)
−
q
(
r
−
′
−
r
)
=
q
(
r
+
′
−
r
−
′
)
=
q
d
{\displaystyle \mathbf {p} (\mathbf {r} )=q(\mathbf {r} _{+}'-\mathbf {r} )-q(\mathbf {r} _{-}'-\mathbf {r} )=q(\mathbf {r} _{+}'-\mathbf {r} _{-}')=q\mathbf {d} }
。
電偶極矩
p
(
r
)
{\displaystyle \mathbf {p} (\mathbf {r} )}
與位移向量
d
{\displaystyle \mathbf {d} }
的方向相同,都是從負電荷指向正電荷。由於電偶極子是中性的,電偶極矩與觀察者的參考點
r
{\displaystyle \mathbf {r} }
無關。
設定
N
{\displaystyle N}
個電偶極子 ,其電偶極矩分別為
p
i
,
i
=
1
,
2
,
…
,
n
{\displaystyle \mathbf {p} _{i},\ i=1,2,\dots ,n}
,則這些電偶極子的總電偶極矩為
p
(
r
)
=
∑
i
=
1
N
p
i
{\displaystyle \mathbf {p} (\mathbf {r} )=\sum _{i=1}^{N}\mathbf {p} _{i}}
。
由於每一個電偶極子都是中性的,整個系統也是中性的。因此,總電偶極矩與觀察者的參考點
r
{\displaystyle \mathbf {r} }
無關。
當論述像質子 、電子 一類的非中性系統時,會出現電偶極矩與參考點有關的問題。對於這些案例,常規是選擇系統的質心 為參考點,而不是任意點[ 1] 。電量中心似乎是比較合理的參考點,但是這會造成電偶極矩等於零的結果 。選擇質心為參考點可以保證電偶極矩是系統的一個內稟性質 (intrinsic property )。
物理電偶極子跟場位置之間的距離關係。
如右圖所示,設定正電荷
+
q
{\displaystyle {+}q}
與負電荷
−
q
{\displaystyle {-}q}
的位置分別為
r
+
=
(
0
,
0
,
d
/
2
)
{\displaystyle \mathbf {r} _{+}=(0,0,d/2)}
、
r
−
=
(
0
,
0
,
−
d
/
2
)
{\displaystyle \mathbf {r} _{-}=(0,0,-d/2)}
,則在場位置
r
{\displaystyle \mathbf {r} }
的電勢
ϕ
{\displaystyle \phi }
為
ϕ
(
r
)
=
q
4
π
ε
0
r
+
−
q
4
π
ε
0
r
−
{\displaystyle \phi (\mathbf {r} )={\frac {q}{4\pi \varepsilon _{0}r_{+}}}-{\frac {q}{4\pi \varepsilon _{0}r_{-}}}}
。
應用餘弦定理 ,假設場位置離電偶極子足够遠,
d
/
2
≪
r
{\displaystyle d/2\ll r}
,則
1
/
r
+
{\displaystyle 1/r_{+}}
、
1
/
r
−
{\displaystyle 1/r_{-}}
\可以分別近似為
1
r
±
=
(
r
2
+
d
2
4
∓
r
d
cos
θ
)
−
1
/
2
=
1
r
(
1
+
d
2
4
r
2
∓
d
cos
θ
r
)
−
1
/
2
≈
1
r
(
1
±
d
cos
θ
2
r
)
{\displaystyle {\begin{aligned}{\frac {1}{r_{\pm }}}&=\left(r^{2}+{\frac {d^{2}}{4}}\mp rd\cos {\theta }\right)^{-1/2}={\frac {1}{r}}\left(1+{\frac {d^{2}}{4r^{2}}}\mp {\frac {d\cos {\theta }}{r}}\right)^{-1/2}\\&\approx {\frac {1}{r}}\left(1\pm {\frac {d\cos {\theta }}{2r}}\right)\\\end{aligned}}}
。
將這兩個公式代入電勢的方程式,可以得到
ϕ
(
r
)
≈
q
d
cos
θ
4
π
ε
0
r
2
{\displaystyle \phi (\mathbf {r} )\approx {\frac {qd\cos {\theta }}{4\pi \varepsilon _{0}r^{2}}}}
。
設定電偶極矩
p
{\displaystyle \mathbf {p} }
為
p
=
q
r
+
−
q
r
−
=
q
d
{\displaystyle \mathbf {p} =q\mathbf {r} _{+}-q\mathbf {r} _{-}=q\mathbf {d} }
;
其中,
d
{\displaystyle \mathbf {d} }
是從負電荷指至正電荷的位移向量。
則電勢以向量標記為
ϕ
(
r
)
=
1
4
π
ε
0
p
⋅
r
^
r
2
{\displaystyle \phi (\mathbf {r} )={\frac {1}{4\pi \varepsilon _{0}}}\ {\frac {\mathbf {p} \cdot {\hat {\mathbf {r} }}}{r^{2}}}}
。
電偶極子的電勢隨著距離平方遞減;而單獨電荷是隨著距離的一次方遞減。所以電偶極子的電勢遞減速度比單獨電荷快很多。
電偶極子的電場是電勢的負梯度 。採用球坐標
(
r
,
θ
,
φ
)
{\displaystyle (r,\theta ,\varphi )}
,電場
E
{\displaystyle \mathbf {E} }
的三個分量
E
r
{\displaystyle E_{r}}
、
E
θ
{\displaystyle E_{\theta }}
、
E
φ
{\displaystyle E_{\varphi }}
分別為
E
r
=
−
∂
ϕ
(
r
)
∂
r
=
p
cos
θ
2
π
ε
0
r
3
{\displaystyle E_{r}=-\ {\frac {\partial \phi (\mathbf {r} )}{\partial r}}={\frac {p\cos {\theta }}{2\pi \varepsilon _{0}r^{3}}}}
、
E
θ
=
−
1
r
∂
ϕ
(
r
)
∂
θ
=
p
sin
θ
4
π
ε
0
r
3
{\displaystyle E_{\theta }=-\ {\frac {1}{r}}\ {\frac {\partial \phi (\mathbf {r} )}{\partial \theta }}={\frac {p\sin {\theta }}{4\pi \varepsilon _{0}r^{3}}}}
、
E
φ
=
−
1
r
sin
θ
∂
ϕ
(
r
)
∂
φ
=
0
{\displaystyle E_{\varphi }=-\ {\frac {1}{r\sin {\theta }}}{\frac {\partial \phi (\mathbf {r} )}{\partial \varphi }}=0}
;
或者,以向量表示為
E
=
p
(
2
cos
θ
r
^
+
sin
θ
θ
^
)
4
π
ε
0
r
3
=
3
(
p
⋅
r
^
)
r
^
−
p
4
π
ε
0
r
3
{\displaystyle \mathbf {E} ={\frac {p(2\cos {\theta }\ {\hat {\mathbf {r} }}+\sin {\theta }\ {\hat {\boldsymbol {\theta }}})}{4\pi \varepsilon _{0}r^{3}}}={\frac {3(\mathbf {p} \cdot {\hat {\mathbf {r} }}){\hat {\mathbf {r} }}-\mathbf {p} }{4\pi \varepsilon _{0}r^{3}}}}
。
注意到這個方程式並不完全正確,這是因為電偶極子的電勢有一個奇點 在它所處的位置(原點
O
{\displaystyle \mathbf {O} }
)。更仔細地推導,可以得到電場為[ 2]
E
=
−
∇
Φ
=
1
4
π
ϵ
0
r
3
(
3
(
p
⋅
r
^
)
r
^
−
p
)
−
p
3
ϵ
0
δ
3
(
r
)
=
p
4
π
ϵ
0
r
3
(
2
cos
θ
r
^
+
sin
θ
θ
^
)
−
p
3
ϵ
0
δ
3
(
r
)
{\displaystyle {\begin{aligned}\mathbf {E} =-\nabla \Phi &={\frac {1}{4\pi \epsilon _{0}r^{3}}}\left(3(\mathbf {p} \cdot {\hat {\mathbf {r} }}){\hat {\mathbf {r} }}-\mathbf {p} \right)-{\frac {\mathbf {p} }{3\epsilon _{0}}}\delta ^{3}(\mathbf {r} )\\&={\frac {p}{4\pi \epsilon _{0}r^{3}}}(2\cos \theta {\hat {\mathbf {r} }}+\sin \theta {\hat {\boldsymbol {\theta }}})-{\frac {\mathbf {p} }{3\epsilon _{0}}}\delta ^{3}(\mathbf {r} )\end{aligned}}}
;
其中,
δ
3
(
r
)
{\displaystyle \delta ^{3}(\mathbf {r} )}
是三維狄拉克δ函數
更詳盡細節,請參閱偶極子 。
假設介電質球的相對電容率 大於四周環境的電極化率,當施加均勻外電場後,電位移 場線展示出的圖樣[ 6] 。
思考處於均勻外電場
E
∞
=
E
∞
z
^
{\displaystyle \mathbf {E} _{\infty }=E_{\infty }{\hat {\mathbf {z} }}}
的一個線性均勻介電質球,其相對電容率 為
ϵ
r
{\displaystyle \epsilon _{r}}
。採用球坐標系
(
r
,
θ
,
ϕ
)
{\displaystyle (r,\theta ,\phi )}
,則對於方位角 對稱系統,拉普拉斯方程式 的一般解為
ϕ
(
r
,
θ
)
=
∑
l
=
0
∞
(
A
l
r
l
+
B
l
r
−
(
l
+
1
)
)
P
l
(
cos
θ
)
{\displaystyle \phi (r,\theta )=\sum _{l=0}^{\infty }(A_{l}\ r^{l}+B_{l}\ r^{-(l+1)})P_{l}(\cos {\theta })}
;
其中,
A
l
(
cos
θ
)
{\displaystyle A_{l}(\cos {\theta })}
是係數,
P
l
(
cos
θ
)
{\displaystyle P_{l}(\cos {\theta })}
是勒讓德多項式 。
設定球坐標系的原點 與介電質球的球心同位置,在球內部,不容許
r
−
(
l
+
1
)
{\displaystyle r^{-(l+1)}}
項目存在,否則,在球心位置,電勢會發散 ,所以,
ϕ
i
n
(
r
,
θ
)
=
∑
l
=
0
∞
A
l
r
l
P
l
(
cos
θ
)
{\displaystyle \phi _{in}(r,\theta )=\sum _{l=0}^{\infty }A_{l}\ r^{l}P_{l}(\cos {\theta })}
。
在球外部,當
r
{\displaystyle r}
超大於球半徑
R
{\displaystyle R}
時,外電場項目是主要項目,其它項目都趨向於零,因此電勢趨向於
−
E
∞
r
cos
θ
{\displaystyle -E_{\infty }r\cos {\theta }}
,所以,
ϕ
o
u
t
(
r
,
θ
)
=
−
E
∞
r
cos
θ
+
∑
l
=
0
∞
B
l
r
−
(
l
+
1
)
P
l
(
cos
θ
)
{\displaystyle \phi _{out}(r,\theta )=-E_{\infty }r\cos {\theta }+\sum _{l=0}^{\infty }B_{l}r^{-(l+1)}P_{l}(\cos {\theta })}
。
在球表面,兩電勢函數必需滿足以下邊界條件:
ϕ
i
n
(
R
,
θ
)
=
ϕ
o
u
t
(
R
,
θ
)
{\displaystyle \phi _{in}(R,\theta )=\phi _{out}(R,\theta )}
、
ϵ
r
∂
ϕ
i
n
(
r
,
θ
)
∂
r
|
r
=
R
=
∂
ϕ
o
u
t
(
r
,
θ
)
∂
r
|
r
=
R
{\displaystyle \epsilon _{r}\left.{\frac {\partial \phi _{in}(r,\theta )}{\partial r}}\right|_{r=R}=\left.{\frac {\partial \phi _{out}(r,\theta )}{\partial r}}\right|_{r=R}}
。
匹配
P
l
(
cos
θ
)
{\displaystyle P_{l}(\cos {\theta })}
相同的項目,第一個邊界條件導致
A
1
R
=
−
E
∞
R
+
B
1
R
−
2
{\displaystyle A_{1}R=-E_{\infty }R+B_{1}R^{-2}}
、
A
l
R
l
=
B
l
R
−
(
l
+
1
)
,
l
≠
1
{\displaystyle A_{l}R^{l}=B_{l}R^{-(l+1)},\qquad \qquad l\neq 1}
;
第二個邊界條件導致
ϵ
r
A
1
=
−
E
∞
−
2
B
1
R
−
3
{\displaystyle \epsilon _{r}A_{1}=-E_{\infty }-2B_{1}R^{-3}}
、
ϵ
r
l
A
l
R
(
l
−
1
)
=
−
(
l
+
1
)
B
l
R
−
(
l
+
2
)
,
l
≠
1
{\displaystyle \epsilon _{r}lA_{l}R^{(l-1)}=-(l+1)B_{l}R^{-(l+2)},\qquad \qquad l\neq 1}
。
從這些方程式,經過一番運算,可以得到
A
1
=
−
3
E
∞
ϵ
r
+
2
{\displaystyle A_{1}=-\ {\frac {3E_{\infty }}{\epsilon _{r}+2}}}
、
B
1
=
(
ϵ
r
−
1
)
R
3
E
∞
ϵ
r
+
2
{\displaystyle B_{1}={\frac {(\epsilon _{r}-1)R^{3}E_{\infty }}{\epsilon _{r}+2}}}
;
其它係數都等於零:
A
l
=
B
l
=
0
,
l
≠
1
{\displaystyle A_{l}=B_{l}=0,\qquad \qquad l\neq 1}
。
所以,在球外部,電勢為
ϕ
o
u
t
(
r
,
θ
)
=
−
E
∞
r
cos
θ
+
(
ϵ
r
−
1
)
R
3
E
∞
cos
θ
(
ϵ
r
+
2
)
r
2
{\displaystyle \phi _{out}(r,\theta )=-E_{\infty }r\cos {\theta }+{\frac {(\epsilon _{r}-1)R^{3}E_{\infty }\cos {\theta }}{(\epsilon _{r}+2)r^{2}}}}
。
這等價於外電場
E
∞
{\displaystyle \mathbf {E} _{\infty }}
與電偶極矩
p
=
4
π
ϵ
0
(
(
ϵ
r
−
1
)
R
3
ϵ
r
+
2
)
E
∞
{\displaystyle \mathbf {p} =4\pi \epsilon _{0}\left({\frac {(\epsilon _{r}-1)R^{3}}{\epsilon _{r}+2}}\right)\mathbf {E} _{\infty }}
所共同產生的電勢,或者,外電場與電偶極矩密度
p
=
p
V
=
3
ϵ
0
(
ϵ
r
−
1
ϵ
r
+
2
)
E
∞
{\displaystyle {\boldsymbol {\mathfrak {p}}}={\frac {\mathbf {p} }{V}}=3\epsilon _{0}\left({\frac {\epsilon _{r}-1}{\epsilon _{r}+2}}\right)\mathbf {E} _{\infty }}
、半徑為
R
{\displaystyle R}
的介電質球所共同產生的電勢。
因子
ϵ
r
−
1
ϵ
r
+
2
{\displaystyle {\frac {\epsilon _{r}-1}{\epsilon _{r}+2}}}
稱為克勞修斯-莫索提因子 。這因子顯示出,假若
ϵ
r
<
1
{\displaystyle \epsilon _{r}<1}
,則感應電極化強度會改變正負號 。當然,實際上,由於介電質的
ϵ
r
≥
1
{\displaystyle \epsilon _{r}\geq 1}
,這狀況永遠不會發生。但是,假設這介電質球含有兩種不同的介電質,
ϵ
r
{\displaystyle \epsilon _{r}}
會被替代為內層與外層的相對電容率的比例,而這比例有可能大於或小於1。
在球內部,電勢為
ϕ
i
n
(
r
,
θ
)
=
−
3
ϵ
r
+
2
E
∞
r
cos
θ
{\displaystyle \phi _{in}(r,\theta )=-{\frac {3}{\epsilon _{r}+2}}E_{\infty }r\cos {\theta }}
。
電場為
E
i
n
=
−
∇
ϕ
i
n
(
r
,
θ
)
=
3
ϵ
r
+
2
E
∞
=
(
1
−
ϵ
r
−
1
ϵ
r
+
2
)
E
∞
{\displaystyle \mathbf {E} _{in}=-\nabla \phi _{in}(r,\theta )={\frac {3}{\epsilon _{r}+2}}\mathbf {E} _{\infty }=\left(1-\ {\frac {\epsilon _{r}-1}{\epsilon _{r}+2}}\right)\mathbf {E} _{\infty }}
。
這顯示出電偶極子的「去電極化效應」,所產生的去極化場
E
p
{\displaystyle \mathbf {E} _{p}}
為
E
p
=
E
i
n
−
E
∞
=
−
(
ϵ
r
−
1
ϵ
r
+
2
)
E
∞
=
−
p
3
ϵ
0
{\displaystyle \mathbf {E} _{p}=\mathbf {E} _{in}-\mathbf {E} _{\infty }=-\ \left({\frac {\epsilon _{r}-1}{\epsilon _{r}+2}}\right)\mathbf {E} _{\infty }=-{\frac {\boldsymbol {\mathfrak {p}}}{3\epsilon _{0}}}}
。
注意到在介電質球內部,電場具有均勻性,並且與外電場平行。電場與電偶極矩密度的關係為
p
=
ϵ
0
(
ϵ
r
−
1
)
E
i
n
{\displaystyle {\boldsymbol {\mathfrak {p}}}=\epsilon _{0}(\epsilon _{r}-1)\mathbf {E} _{in}}
;
電偶極矩密度也是均勻的,所以,體束縛電荷密度為零:
ρ
b
o
u
n
d
=
−
∇
⋅
p
=
0
{\displaystyle \rho _{bound}=-\nabla \cdot {\boldsymbol {\mathfrak {p}}}=0}
。
在介電質球表面,面束縛電荷密度是內外兩電場的徑向分量的差值,或電偶極矩密度與徑向單位向量的內積:
σ
b
o
u
n
d
=
3
ε
0
ϵ
r
−
1
ϵ
r
+
2
E
∞
cos
θ
=
p
⋅
r
^
{\displaystyle \sigma _{bound}={3}\varepsilon _{0}{\frac {\epsilon _{r}-1}{\epsilon _{r}+2}}E_{\infty }\cos {\theta }={\boldsymbol {\mathfrak {p}}}\cdot {\hat {\mathbf {r} }}}
。
近期,有很多實驗研究專注於測量基本粒子 和複合粒子的電偶極矩,這包括電子 、中子 、緲子 、陶子 、水銀 等等。這是一項非常熱門的題目,電偶極矩的存在違反了宇稱 對稱性(P)與時間反演對稱 性(time reversal symmetry )(T)[ 註 1] 。假定CPT對稱性 (CPT symmetry )正確無誤,則由於時間破壞,電偶極矩數值會給出一個大自然CP破壞 的衡量,並且這衡量與理論模型幾乎無關。因此,電偶極矩數值給CP破壞的尺寸設定了強約束;粒子物理學 的標準模型 的任何延伸都必需遵守這強約束。
因為不符合這越來越嚴格的電偶極矩上限,很多理論實際已被否定[ 7] 。換另一方面思考,已確立的理論——量子色動力學 ——所允許的電偶極矩數值比限制大了許多;這導致出強CP問題 (strong CP problem ):為甚麼似乎量子色動力學並沒有摧毀CP對稱性 ?這也促使物理學者積極地尋找像軸子 一類的新粒子[ 8] 。
物理學者精心設計的最新一代實驗對於電偶極矩的超對稱 值域具有高靈敏度;這與正在大型強子對撞機 進行的實驗相輔互成[ 9] [ 10] 。
對於各種粒子的電偶極矩,現在最準確的估計為
中子:
|
p
n
|
<
2.9
×
10
−
26
e
c
m
(
90
%
C
.
L
.
)
{\displaystyle |p_{n}|<2.9\times 10^{-26}\ e\ \mathrm {cm} \ (90\%C.L.)}
[ 11] 、
電子:
|
p
e
|
<
1.05
×
10
−
27
e
c
m
(
90
%
C
.
L
.
)
{\displaystyle |p_{e}|<1.05\times 10^{-27}\ e\ \mathrm {cm} \ (90\%C.L.)}
[ 12] 、
水銀 :
|
p
H
g
|
<
3.1
×
10
−
29
e
c
m
(
95
%
C
.
L
.
)
{\displaystyle |p_{Hg}|<3.1\times 10^{-29}\ e\ \mathrm {cm} \ (95\%C.L.)}
[ 13] 。
由於內稟電偶極矩而產生的宇稱(P)破壞和時間反演(T)破壞。
假設基本粒子擁有內稟電偶極矩,則宇稱 (P)和時間反演對稱性 (T)都會被破壞。舉例而言,思考中子的磁偶極矩 和假定的電偶極矩,這兩種向量的方向必需相同。但是,時間反演會逆反磁偶極矩的方向,不會改變電偶極矩的方向[ 註 2] ;空間反演(宇稱)會逆反電偶極矩的方向,不會改變磁偶極矩的方向[ 註 3]
。電偶極矩的存在破壞了這些對稱性。假定CPT對稱性正確無誤,則時間反演破壞也促使CP對稱性被破壞。
按照前面論述,為了營造有限值電偶極矩,必需先存在有破壞CP對稱性的理論程序。實驗者已經在弱交互作用 的實驗中觀測到CP破壞,也已經能夠用標準模型的卡比博-小林-益川矩陣 中的CP破壞相位 來解釋CP破壞。但是,這解釋所獲得的CP破壞數值非常微小,因此對於電偶極矩的貢獻也微乎其微:
|
p
n
|
∼
10
−
32
e
c
m
{\displaystyle |p_{n}|\sim 10^{-32}\ e\ \mathrm {cm} }
[ 14] 。遠遠低於現在最精密實驗所能測量到的數值。電偶極矩實驗可以用來核對很多從標準模型延伸的嶄新理論,例如如最小超對稱標準模型 (minimal supersymmetric standard model )、左右對稱模型 (left-right symmetric model )等等。這些理論估計的電偶極矩數值在可核對值域內。
偶極子
磁偶极矩
键偶极矩
中子電偶極矩
电子电偶极矩 (electron electric dipole moment )
轴多極矩 (axial multipole moments )
圓柱多極矩 (cylindrical multipole moments )
球多極矩 (spherical multipole moments )
在粒子物理學 裏,有三種重要的離散 對稱性:電荷共軛對稱性是粒子與其反粒子的對稱性,又稱「正反共軛對稱性」。宇稱對稱性是關於粒子位置
r
{\displaystyle \mathbf {r} }
與
−
r
{\displaystyle -\mathbf {r} }
的對稱性,時間反演對稱性是時間
t
{\displaystyle t}
與
−
t
{\displaystyle -t}
的對稱性。
時間反演變換將
t
{\displaystyle t}
改變為
−
t
{\displaystyle -t}
。一個載流迴圈的磁偶極矩
μ
{\displaystyle {\boldsymbol {\mu }}}
是其所載電流
I
{\displaystyle I}
乘於迴圈面積
a
{\displaystyle \mathbf {a} }
,以方程式表示為
μ
=
I
a
=
d
q
d
t
a
{\displaystyle {\boldsymbol {\mu }}=I\mathbf {a} ={\frac {\mathrm {d} q}{\mathrm {d} t}}\mathbf {a} }
。注意到電流是電荷量對於時間的導數,所以,時間反演會逆反磁偶極矩的方向。電偶磁矩的兩個參數,電荷量和位移向量都跟時間反演無關,所以,時間反演不會改變電偶極矩的方向。
空間反演(宇稱)變換是粒子位置坐標對於參考系原點的反射 。電偶極矩是極向量 (polar vector ),而磁偶極矩是軸向量 (axial vector ),所以,空間反演(宇稱)會逆反電偶極矩的方向,不會改變磁偶極矩的方向。
George E Owen. Introduction to Electromagnetic Theory republication of the 1963 Allyn & Bacon. Courier Dover Publications. 2003: 80. ISBN 0-486-42830-3 .
Daniel A. Jelski, Thomas F. George. Computational studies of new materials. World Scientific. 1999: 222ff. ISBN 981-02-3325-6 .
Baker, C. A.; Doyle, D. D.; Geltenbort, P.; Green, K.; van der Grinten, M. G. D.; Harris, P. G.; Iaydjiev, P.; Ivanov, S. N.; May, D. J. R. Improved Experimental Limit on the Electric Dipole Moment of the Neutron . Physical Review Letters. 2006-09-27, 97 (13): 131801. ISSN 0031-9007 . doi:10.1103/PhysRevLett.97.131801 (英语) .