Some authors (e.g., Bracewell) use our −H as their definition of the forward transform. A consequence is that the right column of this table would be negated.
The Hilbert transform of the sin and cos functions can be defined in a distributional sense, if there is a concern that the integral defining them is otherwise conditionally convergent. In the periodic setting this result holds without any difficulty.
Grafakos, Loukas, An Elementary Proof of the Square Summability of the Discrete Hilbert Transform, American Mathematical Monthly (Mathematical Association of America), 1994, 101 (5): 456–458, JSTOR 2974910, doi:10.2307/2974910.
Grafakos, Loukas, Classical and Modern Fourier Analysis, Pearson Education, Inc.: 253–257, 2004, ISBN 0-13-035399-X.
Hardy, G. H.; Littlewood, J. E.; Polya, G., Inequalities, Cambridge: Cambridge University Press, 1952, ISBN 0-521-35880-9.
Hilbert, David, Grundzüge einer allgemeinen Theorie der linearen Integralgleichungen, Chelsea Pub. Co., 1953
Kak, Subhash, The discrete Hilbert transform, Proc. IEEE, 1970, 58: 585–586 .
Kak, Subhash, Number theoretic Hilbert transform, Circuits Systems Signal Processing, 2014, 33: 2539–2548 .
Pandey, J.N., The Hilbert transform of Schwartz distributions and applications, Wiley-Interscience, 1996, ISBN 0-471-03373-1
Pichorides, S., On the best value of the constants in the theorems of Riesz, Zygmund, and Kolmogorov, Studia Mathematica, 1972, 44: 165–179
Riesz, Marcel, Sur les fonctions conjuguées, Mathematische Zeitschrift, 1928, 27 (1): 218–244, doi:10.1007/BF01171098
Rosenblum, Marvin; Rovnyak, James, Hardy classes and operator theory, Dover, 1997, ISBN 0-486-69536-0
Schwartz, Laurent, Théorie des distributions, Paris: Hermann, 1950.
Schreier, P.; Scharf, L., Statistical signal processing of complex-valued data: the theory of improper and noncircular signals, Cambridge University Press, 2010
Stein, Elias, Singular integrals and differentiability properties of functions, Princeton University Press, 1970, ISBN 0-691-08079-8.
Stein, Elias; Weiss, Guido, Introduction to Fourier Analysis on Euclidean Spaces, Princeton University Press, 1971, ISBN 0-691-08078-X.
Sugiura, Mitsuo, Unitary Representations and Harmonic Analysis: An Introduction, North-Holland Mathematical Library 44 2nd, Elsevier, 1990, ISBN 0444885935
Titchmarsh, E, Reciprocal formulae involving series and integrals, Mathematische Zeitschrift, 1926, 25 (1): 321–347, doi:10.1007/BF01283842.
Titchmarsh, E, Introduction to the theory of Fourier integrals 2nd, Oxford University: Clarendon Press, 19481986, ISBN 978-0-8284-0324-5.
Zygmund, Antoni, Trigonometric series 2nd, Cambridge University Press, 19681988, ISBN 978-0-521-35885-9.