Loading AI tools
来自维基百科,自由的百科全书
在拓扑学和相关的数学分支中,T1 空间和 R0 空间是特定种类的拓扑空间。T1 和 R0 性质是分离公理的个例。
设 X 是拓扑空间并设 x 和 y 是 X 中的点。我们称 x 和 y 可以被“分离”如果它们每个都位于不包含另一个点的一个开集中。
T1 空间也叫做可及空间(accessible space)或Fréchet 空间,而 R0 空间也叫做对称空间。(术语“Fréchet空间”在泛函分析中有完全不同的意义。为此偏好术语“T1 空间”。还有作为某种类型的序列空间的Fréchet-Urysohn空间的概念。术语“对称空间”也有其他意义。)
设 X 是拓扑空间。则下列条件等价:
设 X 是拓扑空间。则下列条件等价:
在任何拓扑空间中,作为任何两个点之间的性质,有下列蕴涵
如果第一个箭头可反转则空间是 R0。如果第二个箭头可以反转则空间是 T0。如果复合箭头可以被反转则空间是 T1。明显的,一个空间是 T1 当且仅当它是 R0 和 T0 二者。
注意有限 T1 空间必然是离散的(因为所有集合都是闭集)。
术语“T1”、“R0”和它们的同义词还可以应用于拓扑空间的变体如一致空间、柯西空间和收敛空间。统一这些例子中概念的特征是固定超滤子(或恒定网)的极限是唯一的(对于 T1 空间)或不別拓扑不可区分性之異時是唯一的(对于 R0 空间)。
这显现出一致空间和更一般的柯西空间总是 R0 的,所以在这些情况下 T1 条件简约为 T0 条件。但是 R0 自身在其他种类的收敛空间上也是有价值的,比如预拓扑空间。
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.