在数学中,雙曲函數恆等式是对出现的变量的所有值都为實的涉及到雙曲函數的等式。这些恒等式在表达式中有些雙曲函數需要简化的时候是很有用的。雙曲函數的恆等式有的與三角恆等式類似。就如同三角函數,他有一个重要应用是非雙曲函數的积分:一个常用技巧是首先使用换元积分法,規則與使用三角函数的代换规则類似,则通过雙曲函數恆等式可简化结果的积分。 雙曲扇形a的很多雙曲函数可以在几何上依据以O为中心的雙曲線来构造。 更多信息 函数, 倒數函数 ... 函数 倒數函数 全寫 簡寫 全寫 簡寫 函数 hyperbolic sine sinh hyperbolic cosecant csch 反函数 inverse hyperbolic sine arcsinh inverse hyperbolic cosecant arccsch 函数 hyperbolic cosine cosh hyperbolic secant sech 反函数 inverse hyperbolic cosine arccosh inverse hyperbolic secant arcsech 函数 hyperbolic tangent tanh hyperbolic cotangent coth 反函数 inverse hyperbolic tangent arctanh inverse hyperbolic cotangent arccoth 关闭 sinh, cosh 和 tanh csch, sech 和 coth 雙曲函數基本恒等式如下: cosh 2 x − sinh 2 x = 1 {\displaystyle \cosh ^{2}x-\sinh ^{2}x=1\,} tanh x ⋅ coth x = 1 {\displaystyle \tanh x\cdot \coth x\,=1} 1 − tanh 2 x = sech 2 x {\displaystyle 1\,-\tanh ^{2}x=\operatorname {sech} ^{2}x} coth 2 x − 1 = csch 2 x {\displaystyle \coth ^{2}x-1\,=\operatorname {csch} ^{2}x} sinh x = e x − e − x 2 {\displaystyle \sinh x={{e^{x}-e^{-x}} \over 2}} cosh x = e x + e − x 2 {\displaystyle \cosh x={{e^{x}+e^{-x}} \over 2}} tanh x = sinh x cosh x {\displaystyle \tanh x={{\sinh x} \over {\cosh x}}} coth x = 1 tanh x {\displaystyle \coth x={1 \over {\tanh x}}} s e c h x = 1 cosh x {\displaystyle {\mathop {\rm {sech}} }x={1 \over {\cosh x}}} c s c h x = 1 sinh x {\displaystyle {\mathop {\rm {csch}} }x={1 \over {\sinh x}}} 就如同三角函數,由上面的平方關係加上雙曲函數的基本定義,可以導出下面的表格,即每個雙曲函數都可以用其他五個表達。(严谨地说,所有根号前都应根据实际情况添加正负号) 更多信息 , ... 函數 sinh cosh tanh coth sech csch sinh x {\displaystyle \sinh x} sinh x {\displaystyle \sinh x\ } sgn x cosh 2 x − 1 {\displaystyle \operatorname {sgn} x{\sqrt {\cosh ^{2}x-1}}} tanh x 1 − tanh 2 x {\displaystyle {\frac {\tanh x}{\sqrt {1-\tanh ^{2}x}}}} sgn x coth 2 x − 1 {\displaystyle {\frac {\operatorname {sgn} x}{\sqrt {\coth ^{2}x-1}}}} sgn ( x ) 1 − sech 2 ( x ) sech ( x ) {\displaystyle \operatorname {sgn}(x){\frac {\sqrt {1-\operatorname {sech} ^{2}(x)}}{\operatorname {sech} (x)}}} 1 csch ( x ) {\displaystyle {\frac {1}{\operatorname {csch} (x)}}} cosh x {\displaystyle \cosh x} 1 + sinh 2 x {\displaystyle {\sqrt {1+\sinh ^{2}x}}} cosh x {\displaystyle \cosh x\ } 1 1 − tanh 2 x {\displaystyle {\frac {1}{\sqrt {1-\tanh ^{2}x}}}} | coth ( x ) | coth 2 ( x ) − 1 {\displaystyle \,{\frac {\left|\coth(x)\right|}{\sqrt {\coth ^{2}(x)-1}}}} 1 sech ( x ) {\displaystyle \,{\frac {1}{\operatorname {sech} (x)}}} 1 + csch 2 ( x ) | csch ( x ) | {\displaystyle \,{\frac {\sqrt {1+\operatorname {csch} ^{2}(x)}}{\left|\operatorname {csch} (x)\right|}}} tanh x {\displaystyle \tanh x} sinh x 1 + sinh 2 x {\displaystyle {\frac {\sinh x}{\sqrt {1+\sinh ^{2}x}}}} sgn x cosh 2 x − 1 cosh x {\displaystyle {\frac {\operatorname {sgn} x{\sqrt {\cosh ^{2}x-1}}}{\cosh x}}} tanh x {\displaystyle \tanh x\ } 1 coth x {\displaystyle {\frac {1}{\coth x}}} sgn ( x ) 1 − sech 2 ( x ) {\displaystyle \,\operatorname {sgn}(x){\sqrt {1-\operatorname {sech} ^{2}(x)}}} sgn ( x ) 1 + csch 2 ( x ) {\displaystyle \,{\frac {\operatorname {sgn}(x)}{\sqrt {1+\operatorname {csch} ^{2}(x)}}}} coth x {\displaystyle \coth x} 1 + sinh 2 x sinh x {\displaystyle {{\sqrt {1+\sinh ^{2}x}} \over \sinh x}} cosh x sgn x cosh 2 x − 1 {\displaystyle {\cosh x \over \operatorname {sgn} x{\sqrt {\cosh ^{2}x-1}}}} 1 tanh x {\displaystyle {1 \over \tanh x}} coth x {\displaystyle \coth x\ } sgn ( x ) 1 − sech 2 ( x ) {\displaystyle \,{\frac {\operatorname {sgn}(x)}{\sqrt {1-\operatorname {sech} ^{2}(x)}}}} sgn ( x ) 1 + csch 2 ( x ) {\displaystyle \,\operatorname {sgn}(x){\sqrt {1+\operatorname {csch} ^{2}(x)}}} sech x {\displaystyle \operatorname {sech} x} 1 1 + sinh 2 x {\displaystyle {1 \over {\sqrt {1+\sinh ^{2}x}}}} 1 cosh θ {\displaystyle {1 \over \cosh \theta }} 1 − tanh 2 x {\displaystyle {\sqrt {1-\tanh ^{2}x}}} coth 2 ( x ) − 1 | coth ( x ) | {\displaystyle \,{\frac {\sqrt {\coth ^{2}(x)-1}}{\left|\coth(x)\right|}}} sech x {\displaystyle \operatorname {sech} x\ } | csch ( x ) | 1 + csch 2 ( x ) {\displaystyle \,{\frac {\left|\operatorname {csch} (x)\right|}{\sqrt {1+\operatorname {csch} ^{2}(x)}}}} csch x {\displaystyle \operatorname {csch} x} 1 sinh x {\displaystyle {1 \over \sinh x}} sgn x cosh 2 x − 1 {\displaystyle {\frac {\operatorname {sgn} x}{\sqrt {\cosh ^{2}x-1}}}} 1 − tanh 2 x tanh x {\displaystyle {\frac {\sqrt {1-\tanh ^{2}x}}{\tanh x}}} sgn ( x ) coth 2 ( x ) − 1 {\displaystyle \,\operatorname {sgn}(x){\sqrt {\coth ^{2}(x)-1}}} sgn ( x ) sech ( x ) 1 − sech 2 ( x ) {\displaystyle \,\operatorname {sgn}(x){\frac {\operatorname {sech} (x)}{\sqrt {1-\operatorname {sech} ^{2}(x)}}}} csch x {\displaystyle \operatorname {csch} x\ } 关闭 Remove ads其他函數的基本關係 三角函數還有正矢、餘矢、半正矢、半餘矢、外正割、外餘割等函數,利用他們的定義也可以導出雙曲函數。 更多信息 , ... 名稱 函數 值 雙曲正矢, hyperbolic versine versinh ( x ) {\displaystyle \operatorname {versinh} (x)} vsnh ( x ) {\displaystyle \operatorname {vsnh} (x)} cosh x − 1 {\displaystyle \cosh x-1} 雙曲餘矢, hyperbolic coversine coversinh ( x ) {\displaystyle \operatorname {coversinh} (x)} cvsh ( x ) {\displaystyle \operatorname {cvsh} (x)} sinh x − 1 {\displaystyle \sinh x-1} 雙曲半正矢 , hyperbolic haversine haversinh ( x ) {\displaystyle \operatorname {haversinh} (x)} versinh ( x ) 2 {\displaystyle {\frac {\operatorname {versinh} (x)}{2}}} 雙曲半餘矢 , hyperbolic hacoversine hacoversinh ( x ) {\displaystyle \operatorname {hacoversinh} (x)} cvsh ( x ) 2 {\displaystyle {\frac {\operatorname {cvsh} (x)}{2}}} 雙曲外正割 , hyperbolic exsecant exsech ( x ) {\displaystyle \operatorname {exsech} (x)} 1 − sech ( x ) {\displaystyle 1-\operatorname {sech} (x)} 雙曲外餘割 , hyperbolic excosecant excsch ( x ) {\displaystyle \operatorname {excsch} (x)} 1 − csch ( x ) {\displaystyle 1-\operatorname {csch} (x)} 关闭 sinh ( x + y ) = sinh x cosh y + cosh x sinh y {\displaystyle \sinh(x+y)\ =\sinh x\cosh y+\cosh x\sinh y\,} sinh ( x − y ) = sinh x cosh y − cosh x sinh y {\displaystyle \sinh(x-y)\ =\sinh x\cosh y-\cosh x\sinh y\,} cosh ( x + y ) = cosh x cosh y + sinh x sinh y {\displaystyle \cosh(x+y)\ =\cosh x\cosh y+\sinh x\sinh y\,} cosh ( x − y ) = cosh x cosh y − sinh x sinh y {\displaystyle \cosh(x-y)\ =\cosh x\cosh y-\sinh x\sinh y\,} tanh ( x + y ) = tanh x + tanh y 1 + tanh x tanh y {\displaystyle \tanh(x+y)\ ={\frac {\tanh x+\tanh y}{1+\tanh x\tanh y}}\,} tanh ( x − y ) = tanh x − tanh y 1 − tanh x tanh y {\displaystyle \tanh(x-y)\ ={\frac {\tanh x-\tanh y}{1-\tanh x\tanh y}}\,} Remove ads sinh x + sinh y = 2 sinh x + y 2 cosh x − y 2 {\displaystyle \sinh x+\sinh y\ =2\sinh {\frac {x+y}{2}}\cosh {\frac {x-y}{2}}\,} sinh x − sinh y = 2 cosh x + y 2 sinh x − y 2 {\displaystyle \sinh x-\sinh y\ =2\cosh {\frac {x+y}{2}}\sinh {\frac {x-y}{2}}\,} cosh x + cosh y = 2 cosh x + y 2 cosh x − y 2 {\displaystyle \cosh x+\cosh y\ =2\cosh {\frac {x+y}{2}}\cosh {\frac {x-y}{2}}\,} cosh x − cosh y = 2 sinh x + y 2 sinh x − y 2 {\displaystyle \cosh x-\cosh y\ =2\sinh {\frac {x+y}{2}}\sinh {\frac {x-y}{2}}\,} tanh x + tanh y = sinh ( x + y ) cosh x cosh y {\displaystyle \tanh x+\tanh y\ ={\frac {\sinh(x+y)}{\cosh x\cosh y}}\,} tanh x − tanh y = sinh ( x − y ) cosh x cosh y {\displaystyle \tanh x-\tanh y\ ={\frac {\sinh(x-y)}{\cosh x\cosh y}}\,} Remove ads sinh x sinh y = cosh ( x + y ) − cosh ( x − y ) 2 {\displaystyle \sinh x\sinh y\ ={\frac {\cosh(x+y)-\cosh(x-y)}{2}}\,} cosh x cosh y = cosh ( x + y ) + cosh ( x − y ) 2 {\displaystyle \cosh x\cosh y\ ={\frac {\cosh(x+y)+\cosh(x-y)}{2}}\,} sinh x cosh y = sinh ( x + y ) + sinh ( x − y ) 2 {\displaystyle \sinh x\cosh y\ ={\frac {\sinh(x+y)+\sinh(x-y)}{2}}\,} Remove ads 二倍角公式: sinh 2 x = 2 sinh x cosh x {\displaystyle \sinh 2x\ =2\sinh x\cosh x\,} cosh 2 x = cosh 2 x + sinh 2 x = 2 cosh 2 x − 1 = 2 sinh 2 x + 1 {\displaystyle \cosh 2x\ =\cosh ^{2}x+\sinh ^{2}x=2\cosh ^{2}x-1=2\sinh ^{2}x+1\,} tanh 2 x = 2 tanh x 1 + tanh 2 x {\displaystyle \tanh 2x\ ={\frac {2\tanh x}{1+\tanh ^{2}x}}\,} 三倍角公式: sinh 3 x = 3 sinh x + 4 sinh 3 x {\displaystyle \sinh 3x\ =3\sinh x+4\sinh ^{3}x} cosh 3 x = 4 cosh 3 x − 3 cosh x {\displaystyle \cosh 3x\ =4\cosh ^{3}x-3\cosh x} Remove ads sinh x 2 = sgn x cosh x − 1 2 {\displaystyle \sinh {\frac {x}{2}}\ =\operatorname {sgn} x{\sqrt {\frac {\cosh x-1}{2}}}} cosh x 2 = cosh x + 1 2 {\displaystyle \cosh {\frac {x}{2}}\ ={\sqrt {\frac {\cosh x+1}{2}}}} tanh x 2 = cosh x − 1 sinh x = sinh x 1 + cosh x {\displaystyle \tanh {\frac {x}{2}}\ ={\frac {\cosh x-1}{\sinh x}}\ ={\frac {\sinh x}{1+\cosh x}}\,} sinh 2 x = cosh 2 x − 1 2 {\displaystyle \sinh ^{2}x={\frac {\cosh 2x-1}{2}}\,} cosh 2 x = cosh 2 x + 1 2 {\displaystyle \cosh ^{2}x={\frac {\cosh 2x+1}{2}}\,} tanh 2 x = cosh 2 x − 1 cosh 2 x + 1 {\displaystyle \tanh ^{2}x={\frac {\cosh 2x-1}{\cosh 2x+1}}\,} sinh x = 2 tanh x 2 1 − tanh 2 x 2 {\displaystyle \sinh x={\frac {2\tanh {\frac {x}{2}}}{1-\tanh ^{2}{\frac {x}{2}}}}} cosh x = 1 + tanh 2 x 2 1 − tanh 2 x 2 {\displaystyle \cosh x={\frac {1+\tanh ^{2}{\frac {x}{2}}}{1-\tanh ^{2}{\frac {x}{2}}}}} tanh x = 2 tanh x 2 1 + tanh 2 x 2 {\displaystyle \tanh x={\frac {2\tanh {\frac {x}{2}}}{1+\tanh ^{2}{\frac {x}{2}}}}} sinh x = x + x 3 3 ! + x 5 5 ! + x 7 7 ! + ⋯ = ∑ n = 0 ∞ x 2 n + 1 ( 2 n + 1 ) ! {\displaystyle \sinh x=x+{\frac {x^{3}}{3!}}+{\frac {x^{5}}{5!}}+{\frac {x^{7}}{7!}}+\cdots =\sum _{n=0}^{\infty }{\frac {x^{2n+1}}{(2n+1)!}}} cosh x = 1 + x 2 2 ! + x 4 4 ! + x 6 6 ! + ⋯ = ∑ n = 0 ∞ x 2 n ( 2 n ) ! {\displaystyle \cosh x=1+{\frac {x^{2}}{2!}}+{\frac {x^{4}}{4!}}+{\frac {x^{6}}{6!}}+\cdots =\sum _{n=0}^{\infty }{\frac {x^{2n}}{(2n)!}}} tanh x = x − x 3 3 + 2 x 5 15 − 17 x 7 315 + ⋯ = ∑ n = 1 ∞ 2 2 n ( 2 2 n − 1 ) B 2 n x 2 n − 1 ( 2 n ) ! , | x | < π 2 {\displaystyle \tanh x=x-{\frac {x^{3}}{3}}+{\frac {2x^{5}}{15}}-{\frac {17x^{7}}{315}}+\cdots =\sum _{n=1}^{\infty }{\frac {2^{2n}(2^{2n}-1)B_{2n}x^{2n-1}}{(2n)!}},\left|x\right|<{\frac {\pi }{2}}} coth x = 1 x + x 3 − x 3 45 + 2 x 5 945 + ⋯ = 1 x + ∑ n = 1 ∞ 2 2 n B 2 n x 2 n − 1 ( 2 n ) ! , 0 < | x | < π {\displaystyle \coth x={\frac {1}{x}}+{\frac {x}{3}}-{\frac {x^{3}}{45}}+{\frac {2x^{5}}{945}}+\cdots ={\frac {1}{x}}+\sum _{n=1}^{\infty }{\frac {2^{2n}B_{2n}x^{2n-1}}{(2n)!}},0<\left|x\right|<\pi } (罗朗级数) sech x = 1 − x 2 2 + 5 x 4 24 − 61 x 6 720 + ⋯ = ∑ n = 0 ∞ E 2 n x 2 n ( 2 n ) ! , | x | < π 2 {\displaystyle \operatorname {sech} \,x=1-{\frac {x^{2}}{2}}+{\frac {5x^{4}}{24}}-{\frac {61x^{6}}{720}}+\cdots =\sum _{n=0}^{\infty }{\frac {E_{2n}x^{2n}}{(2n)!}},\left|x\right|<{\frac {\pi }{2}}} csch x = 1 x − x 6 + 7 x 3 360 − 31 x 5 15120 + ⋯ = 1 x + ∑ n = 1 ∞ 2 ( 1 − 2 2 n − 1 ) B 2 n x 2 n − 1 ( 2 n ) ! , 0 < | x | < π {\displaystyle \operatorname {csch} \,x={\frac {1}{x}}-{\frac {x}{6}}+{\frac {7x^{3}}{360}}-{\frac {31x^{5}}{15120}}+\cdots ={\frac {1}{x}}+\sum _{n=1}^{\infty }{\frac {2(1-2^{2n-1})B_{2n}x^{2n-1}}{(2n)!}},0<\left|x\right|<\pi } (罗朗级数) 其中 B n {\displaystyle B_{n}\,} 是第n項 伯努利數 E n {\displaystyle E_{n}\,} 是第n項 欧拉數 利用三角恒等式的指數定義和雙曲函數的指數定義(英语:Hyperbolic_function#Hyperbolic_functions_for_complex_numbers)即可求出下列恆等式: e i x = cos x + i sin x , e − i x = cos x − i sin x {\displaystyle e^{ix}=\cos x+i\;\sin x\qquad ,\;e^{-ix}=\cos x-i\;\sin x} e x = cosh x + sinh x , e − x = cosh x − sinh x {\displaystyle e^{x}=\cosh x+\sinh x\!\qquad ,\;e^{-x}=\cosh x-\sinh x\!} 所以 cosh i x = 1 2 ( e i x + e − i x ) = cos x {\displaystyle \cosh ix={\tfrac {1}{2}}(e^{ix}+e^{-ix})=\cos x} sinh i x = 1 2 ( e i x − e − i x ) = i sin x {\displaystyle \sinh ix={\tfrac {1}{2}}(e^{ix}-e^{-ix})=i\sin x} 下表列出部分的三角函數與雙曲函數的恆等式: 更多信息 , ... 三角函數 雙曲函數 sin θ = − i sinh i θ {\displaystyle \sin \theta =-i\sinh {i\theta }\,} sinh θ = i sin ( − i θ ) {\displaystyle \sinh {\theta }=i\sin {(-i\theta )}\,} cos θ = cosh i θ {\displaystyle \cos {\theta }=\cosh {i\theta }\,} cosh θ = cos ( − i θ ) {\displaystyle \cosh {\theta }=\cos {(-i\theta )}\,} tan θ = tanh i θ i {\displaystyle \tan \theta ={\frac {\tanh {i\theta }}{i}}\,} tanh θ = i tan ( − i θ ) {\displaystyle \tanh {\theta }=i\tan {(-i\theta )}\,} cot θ = i coth i θ {\displaystyle \cot {\theta }=i\coth {i\theta }\,} coth θ = cot ( − i θ ) i {\displaystyle \coth \theta ={\frac {\cot {(-i\theta )}}{i}}\,} sec θ = sech i θ {\displaystyle \sec {\theta }=\operatorname {sech} {\,i\theta }\,} sech θ = sec ( − i θ ) {\displaystyle \operatorname {sech} {\theta }=\sec {(-i\theta )}\,} csc θ = i csch i θ {\displaystyle \csc {\theta }=i\;\operatorname {csch} {\,i\theta }\,} csch θ = csc ( − i θ ) i {\displaystyle \operatorname {csch} \theta ={\frac {\csc {(-i\theta )}}{i}}\,} 关闭 其他恆等式: cosh i x = 1 2 ( e i x + e − i x ) = cos x {\displaystyle \cosh ix={\tfrac {1}{2}}(e^{ix}+e^{-ix})=\cos x} sinh i x = 1 2 ( e i x − e − i x ) = i sin x {\displaystyle \sinh ix={\tfrac {1}{2}}(e^{ix}-e^{-ix})=i\sin x} cosh ( x + i y ) = cosh ( x ) cos ( y ) + i sinh ( x ) sin ( y ) {\displaystyle \cosh(x+iy)=\cosh(x)\cos(y)+i\sinh(x)\sin(y)\,} sinh ( x + i y ) = sinh ( x ) cos ( y ) + i cosh ( x ) sin ( y ) {\displaystyle \sinh(x+iy)=\sinh(x)\cos(y)+i\cosh(x)\sin(y)\,} tanh i x = i tan x {\displaystyle \tanh ix=i\tan x\,} cosh x = cos i x {\displaystyle \cosh x=\cos ix\,} sinh x = − i sin i x {\displaystyle \sinh x=-i\sin ix\,} tanh x = − i tan i x {\displaystyle \tanh x=-i\tan ix\,} 三角函數恆等式 雙曲函數 雙曲線 三角函數 三角形 數學基本公式手冊 九章出版社 ISBN 957-603-010-2 Wikiwand in your browser!Seamless Wikipedia browsing. On steroids.Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.Wikiwand for ChromeWikiwand for EdgeWikiwand for FirefoxRemove ads
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.