Loading AI tools
来自维基百科,自由的百科全书
在拓扑学及相关的数学領域中,连通空间是指不能表示为两个或多个不相交的非空开集的并集的拓扑空间。
如果拓扑空间中存在兩個分離的非空开集使得它們的并集等於,則被稱作不连通的,否則稱它是連通的。
對拓扑空间,以下條件為等價的:
连通性是拓扑空间的一个拓扑不变性质,即如果两个同胚拓扑空间之一连通,则另一个空间也连通。
一些数学家承认空集(按照它独有的拓扑)是连通空间,不过也有数学家不承认这一点。
如果拓扑空间的子集诱导的子拓扑空间是连通的,則被称为的连通子集。
對拓撲空間上的點,所有包含的連通子集的聯集
也是連通的。作為包含的极大连通子集,称作關於的连通单元。
如果的所有連通單元都是单元素集合,則稱為完全不连通空间。
每个空间都能表成它的连通单元的不相交并集。
连通单元必為閉集,在一些理想的拓撲空间(如流形、代数簇)上同時是開集,但這不代表連通單元總是閉開集(例如完全不連通空間,單元素集合在該空間中並非開集)。
道路连通空间必定是连通空间,反之不一定。
道路连通的豪斯多夫空间必为弧连通空间。
拓扑空间X称为局部连通的,当且仅当以下叙述之一成立:
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.