Loading AI tools
任何一元複係數方程式都至少有一個複數根 来自维基百科,自由的百科全书
代数基本定理(英語:fundamental theorem of algebra)说明,任何一个一元複系数多项式方程都至少有一个複数根。也就是说,複數域是代数封闭的。
有时这个定理表述为:任何一个非零的一元n次複系数多项式,都正好有n个複数根(重根視為多個根)。这似乎是一个更强的命题,但实际上是“至少有一个根”的直接结果,因为不断把多项式除以它的线性因子,即可从有一个根推出有n个根。也就是说,任何一个n次多项式,都可以因式分解为n个复系数一次多项式的乘积。
尽管这个定理被命名为“代数基本定理”,但它还没有纯粹的代数证明,许多数学家都相信这种证明不存在。[1]另外,它也不是最基本的代数定理;因为在那个时候,代数基本上就是关于解实系数或複系数多项式方程,所以才被命名为代数基本定理。
高斯一生总共对这个定理给出了四个证明,其中第一个是在他22岁时(1799年)的博士论文中给出的。高斯给出的证明既有几何的,也有函数的,还有积分的方法。高斯关于这一命题的证明方法是去证明其根的存在性,开创了关于研究存在性命题的新途径。
同时,高次代数方程的求解仍然是一大难题。伽罗瓦理論指出,对于一般五次以及五次以上的方程,不存在一般的代数解。
所有的证明都包含了一些数学分析,至少是实数或複数函数的连续性概念。有些证明也用到了可微函数,甚至是解析函数。
定理的某些证明仅仅证明了任何实系数多项式都有複数根。这足以推出定理的一般形式,这是因为,给定複系数多项式p(z),以下的多项式
就是一个实系数多项式,如果z是q(z)的根,那么z或它的共轭複数就是p(z)的根。
许多非代数证明都用到了“增长引理”:当|z|足够大时,首系数为1的n次多项式函数p(z)的表现如同zn。一个更确切的表述是:存在某个正实数R,使得当|z| > R时,就有:
寻找一个中心为原点,半径为r的闭圆盘D,使得当|z| ≥ r时,就有|p(z)| > |p(0)|。因此,|p(z)|在D内的最小值(一定存在,因为D是紧致的),是在D的内部的某个点z0取得,但不能在边界上取得。于是,根据最大模原理,p(z0) = 0。也就是说,z0是p(z)的一个零点(根)。
由于在D之外,有|p(z)| > |p(0)|,因此在整个複平面上,|p(z)|的最小值在z0取得。如果|p(z0)| > 0,那么1/p在整个複平面上是有界的全纯函数,这是因为对于每一个複数z,都有|1/p(z)| ≤ |1/p(z0)|。利用刘维尔定理(有界的整函数一定是常数),可知1/p是常数,因此p是常数。于是得出矛盾,所以p(z0) = 0。
这个证明用到了辐角原理。设R为足够大的正实数,使得p(z)的每一个根的绝对值都小于R;这个数一定存在,因为n次多项式函数最多有n个根。对于每一个r > R,考虑以下的数:
其中c(r)是中心为0,半径为r的逆时针方向的圆;于是辐角原理表明,这个数是p(z)在中心为0、半径为r的开圆盘内的零点的数目N,由于r > R,所以它也是p(z)的零点的总数目。另一方面,n/z沿着c(r)的积分除以2πi,等于n。但这两个数的差为:
被积分的有理表达式中的分子,次数最多是n − 1,而分母的次数是n + 1。因此,当r趋于+∞时,以上的数趋于0。但这个数也等于N − n,因此有N = n。
这个证明结合了线性代数和柯西积分定理。为了证明每一个n > 0次複系数多项式都有一个根,只需证明每一个方块矩阵都有一个複数特征值[2]。证明用到了反证法。
设A为大小n > 0的方块矩阵,并设In为相同大小的单位矩阵。假设A没有特征值。考虑预解函数
它在複平面上是亚纯函数,它的值位于矩阵的向量空间内。A的特征值正好是R(z)的极点。根据假设,A没有特征值,因此函数R(z)是整函数,根据柯西积分定理可知:
另一方面,把R(z)展开为几何级数,可得:
这个公式在半径为||A||的闭圆盘的外部(A的算子范数)成立。设r > ||A||。那么:
(仅当k = 0时,积分才不等于零)。于是得出矛盾,因此A一定有一个特征值。
设z0 ∈ C为使|p(z)|在z0取得最小值的数; 从用到刘维尔定理的证明中,可以看到这样一个数一定存在。我们可以把p(z)写成z − z0的多项式:存在某个自然数k和一些複数ck、ck + 1、…、cn,使得ck ≠ 0,以及:
可推出如果a是(p(z)-p(z0))/ck的一个k重根,且t是足够小的正数,那么|p(z0 + ta)| < |p(z0)|,这是不可能的,因为|p(z0)|是|p|在D内的最小值。
对于另外一个用到反证法的拓扑学证明,假设p(z)没有根。选择一个足够大的正数R,使得对于|z| = R,p(z)的第一项zn大于所有其它的项的和;也就是说,|z|n > |an − 1zn −1 + ··· + a0|。当z依逆时针方向绕过方程为|z| = R的圆一次时,p(z),像zn那样,依逆时针方向绕过零n次。在另外一个极端,|z| = 0时,“曲线” p(z)仅仅是一个(非零的)点p(0),它的卷绕数显然是0。如果z所经过的回路在这两个极端中被连续变形,那么p(z)的路径也连续变形。我们可以把这个变形记为,其中t大于或等于0,而小于或等于1。如果我们把变量t视为时间,那么在时间为零时,曲线为p(z),时间为1时,曲线为p(0)。显然在每一个点t,根据原先的假设p(z)都不能是零,因此在变形的过程中,曲线一直都没有经过零。因此曲线关于0的绕数应该不变。然而,由于绕数在一开始是n,结束时是0,因此得出矛盾。所以,p(z)至少有一个根。
这个证明需要依赖实数集的如下事实:正实数在上有实平方根,以及任何奇次多项式在上有一个根(这可以用介值定理证明)。
首先。经过简单的计算可以证明在开平方运算下是封闭的(利用事实1)。结合。得出不存在二阶扩张。
由于,于是任何的扩张都是可分的,从而任何的代数扩张都可以被包含在一个伽罗瓦扩张内。假设、都是伽罗瓦扩张。考虑伽罗瓦群的西罗2-子群H。那么是奇数。由本原元定理得出,KH存在本原元,它的极小多项式是奇次的。但是利用实数集的事实2,任何奇次数多项式在实数上有一个根,不存在奇數次且次數>1的不可分多項式。於是是2的幂次。
假设并且r>0,再次利用西罗定理,G存在一个阶为2r-1的子群N。这时。这和先前不存在二阶扩张矛盾。因此的任何代数扩张都是本身,代数基本定理得证。
由于代数基本定理可以视为複数域是代数封闭的,可推出任何关于代数封闭域的定理在複数域都是适用的。这个定理有一些推论,要么是关于实数域的,要么是关于实数域与複数域之间的关系的:
韦达公式把多项式的系数与它的根的和与积联系起来。
这可以直接从以下等式的展开式推出:
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.