Loading AI tools
純數學的一個分支 来自维基百科,自由的百科全书
数学分析学,也稱分析数学、分析学或解析学(英語:Mathematical Analysis),是普遍存在於大学数学专业的一门基础课程。大致与非數學专业学生所學的高等数学課程内容相近,但內容更加深入,一般指以微积分学、无穷级数和解析函數等的一般理论为主要内容,并包括它们的理论基础[註 1]的一个较为完整的数学学科。[1]
数学分析研究的內容包括實數、複數、實函數及複變函數。数学分析是由微積分演進而來,在微积分发展至现代阶段中,从应用中的方法总结升华为一类综合性分析方法,且初等微積分中也包括許多數學分析的基礎概念及技巧,可以认为这些应用方法是高等微积分生成的前提。数学分析的方式和其幾何有關,不過只要任一數學空間有定義鄰域(拓扑空间)或是有針對兩物件距離的定義(度量空间),就可以用数学分析的方式進行分析。
在古希腊数学的早期,数学分析的结果是隐含给出的。比如,芝诺的两分法悖论就隐含了无限几何和。[2]再后来,古希腊数学家如欧多克索斯和阿基米德使数学分析变得更加明确,但还不是很正式。他们在使用穷竭法去计算区域和固体的面积和体积时,使用了極限和收敛的概念。[3]在古印度数学的早期,12世纪的数学家婆什迦羅第二给出了导数的例子,还使用过现在所知的罗尔定理。
历史上,数学分析起源于17世纪,伴随着牛顿和莱布尼兹发明微积分而产生的。在17、18世纪,数学分析的主题,如变分法,常微分方程和偏微分方程,傅立叶分析以及母函数基本上发展于应用工作中。微积分方法成功的运用了连续的方法近似了离散的问题。
贯穿18世纪,函数概念的定义成为了数学家们争论的主题。到了19世纪,柯西首先地通过引入柯西序列的概念将微积分建立在一个稳固的逻辑基础之上。他还开始了複分析的形式理论。泊松、刘维尔、傅里叶以及其他的数学家研究了偏微分方程和调和分析。
19世纪中叶,黎曼引入了他的积分理论。在19世纪的最后第三个年代还产生了魏尔施特拉斯对于分析的算术化,他认为几何论证从本质上是一种误导,并提出了极限的 (ε, δ) 定义。此时,数学家们开始担心他们在没有证明的情况下假设了实数连续统的存在。戴德金用戴德金分割构造了实数。大约在那个时候,对黎曼积分精炼的种种尝试也引向了实数函数的非连续集合的“大小”的研究。
在19世紀末時,也發現了許多病態函數,像是處處不連續函數、處處連續但處處不可微分的魏爾斯特拉斯函數以及空間填充曲線等。卡米爾·若爾當發展了若爾當測度,而格奧爾格·康托爾提出了現在稱為樸素集合論的理論,勒內-路易·貝爾證明了貝爾綱定理。在20世紀初期,利用公理化的集合論將微積分進行形式化,昂利·勒貝格解決了量測問題,大卫·希尔伯特導入了希尔伯特空间來求解積分方程。賦範向量空間的概念已經提出,1920年代時斯特凡·巴拿赫創建了泛函分析。
數學中的度量空間是一個集合,而集合中兩個元素的距離(叫做度量)有清楚的定義。
大部份的數學分析都是針對特定的度量空間,最常見的是數線、複數平面、欧几里得空间、其他向量空間及整數。數學中沒有度量的分包括有量測理論(描述大小而不是距離)及泛函分析(研究不需要距離概念的拓撲向量空間)
度量空間是一個有序對,其中是一集合,而為中的度量(也是函數)
使得針對任何的,以下的敘述都成立:
數列是一個有序的列表,數列像集合一樣都是由元素組成,但和集合不同,數列有順序的概念,而完全相同的元素可以在數列中出現一至多次。更準確的說法,數列可以用定義域為全序關係可數集(例如自然數)的函數來定義。
數列最重要的性質是收斂,若簡單的做非正式的定義,一數列若存在極限,表示此數列收斂。若繼續下非正式的定義,一個無窮數列an,若在n非常大時接近一數值x,則稱此數列有極限,而其極限為x,因此極限也可以視為是數列趨向的數值[4]。因此針對數列an,當n → ∞時,an和x之間的距離會趨近於0:
数学分析在当前被分为以下几个分支领域:
数学分析的技巧可以用在其他以下的領域:
經典力學、相對論及量子力學中大部份的內容都是以数学分析及微分方程為基礎。其中重要的微分方程包括牛頓第二運動定律、薛定谔方程及愛因斯坦場方程。
泛函分析是量子力學中的一個重要主題。
信號處理可以用在許多不同信號的處理上,不論是聲音、無線電波、光波、地震波其至影像,傅立葉分析可以取出信號中特定的成份,可以進一步將信號加強或是移除。大部份的信號處理技術都包括了將信號進行傅立葉轉換、轉換後信號進行簡單的處理,再進行反轉換[14]。
数学分析的技巧可以用在以下的數學領域中:
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.