Loading AI tools
一種電磁波 来自维基百科,自由的百科全书
紅外線(英語:infrared,簡稱IR)是波長介乎微波與可見光之間的電磁波,其波長在760納米(nm)至1毫米(mm)之間,[1]是波長比紅光長的非可見光,對應頻率約是在430 THz到300 GHz的範圍內[2]。室溫下物體所發出的熱輻射多都在此波段。紅外線於1800年由威廉·赫歇爾首次提出。地球吸收及發射紅外線輻射對氣候具影響,現今紅外線亦應用於不同科技領域。
紅外線是在1800年由天文學家威廉·赫歇爾發現,他通過將溫度計放置於太陽光譜的紅色區域之外並發現溫度上升,指出有一種頻率低於紅色光的輻射:肉眼看不見,但仍能使被照射物體表面的溫度上昇。地球從太陽獲得的能量中,有超過一半是以吸收紅外線的方式。地球吸收及發射紅外線輻射的平衡對其氣候有關鍵性的影響。
當分子改變其旋轉或振動的運動方式時,就會吸收或發射紅外線。由紅外線的能量可以找出分子的振動模態及其偶極矩的變化,因此在研究分子對稱性及其能態時,紅外線是理想的頻率範圍。紅外線光譜學研究在紅外線範圍內的光子吸收及發射[3]。
光線是一種輻射電磁波,其波長分佈自300 nm(紫外線)到14,000 nm(遠紅外線)。不過以人類的經驗而言,「光域」通常指的是肉眼可見的光波域,即是從400 nm(紫)到700 nm(紅)可以被人類眼睛感覺得到的範圍,一般稱為「可見光域」(Visible)。由於近代科技的發達,人類利用各種「介質」(特殊材質的感應器),把感覺範圍從「可見光」部份向兩端擴充,最低可達到0.08~0.1nm(X光,0.8~1Å),最高可達10,000 nm(遠紅外線,熱成像範圍)。
窄帶隙半導體為各種基於紅外技術器件的材料基礎,包括鉍、銻、銦、鎘、硒等元素的化合物及合金。[4][5]尖端高頻功能性紅外器件的研發常基於窄帶隙的納米材料。納米窄帶半導體中,量子限制效應和電子-空穴耦合存在相互作用,致使描述和設計常面臨諸多挑戰。[6]「蘭克斯模型」將k·p方法拓展到了非拋物線性的能帶邊結構,常用於處理紅外範圍內的電子光學。[7]利用密度泛函理論的第一性原理超級計算,被用以了解精確的能帶曲率和對應的光電子密度,但對算力和算時要求甚高。研發者亦常採用「唐-崔瑟豪斯理論」[8][9]的低維多帶迭代法來解決此問題。[10][11]
陽光的等效溫度為5,780開爾文,其熱輻射的頻譜中有一半是紅外線。在海平面上,陽光在的輻照度是每平方公尺1千瓦。其中有527瓦的能量是紅外線、445瓦是可見光,而32瓦的能量是紫外線[12]。
在地球表面,其溫度遠低於太陽的溫度,幾乎所有的熱輻射都是由不同頻率的紅外線組成。在這些天然的熱輻射源中,只有閃電及火熱到可以產生一些可見光,而火產生的紅外線比可見光還要多。
物體通常會輻射出跨越不同波長的紅外線,但是偵測器的設計通常只能接收感到興趣的特定頻譜寬度以內的輻射。結果是,紅外線通常會被區分成不同波長的較小區段。
一般使用者的分類是[13]:
NIR和SWIR有時被稱為"反射紅外線",而MWIR和LWIR有時被稱為"熱紅外線",這是基於黑體輻射曲線的特性,典型的'熱'物體,像是排氣管,同樣的物體通常在MW的波段會比在LW波段下來得更為明亮。
ISO 20473的分類如下:
名稱 | 縮寫 | 波長 |
---|---|---|
近紅外線 | NIR | 0.78—3微米 |
中紅外線 | MIR | 3—50微米 |
遠紅外線 | FIR | 50—1,000微米 |
天文學家通常將以如下的波段區分紅外線的範圍[15]:
名稱 | 縮寫 | 波長 |
---|---|---|
近紅外線 | NIR | (0.7—1)至5微米 |
中紅外線 | MIR | 5至(25—40)微米 |
遠紅外線 | FIR | (25—40)至(200—350)微米 |
這種分類不是很精確,而且和發佈的單位有關。這三種區域分別用於觀測不同溫度的範圍,以及不同環境下的空間。
可以依不同感測器可偵測的範圍來分類[16]:
近紅外線最接近人眼可以看到的波長範圍,而中波紅外線及長波紅外線就逐漸地遠離可見光譜。其他的定義會依照不同的物理機制(最大發射量的頻率或頻帶,是否會被水吸收等),最新的定義是依照新的技術(常見的矽偵測器在1,050 nm以下可以感測,而砷化銦鎵則是950 nm至1,7002,600 nm的範圍內可以感測。
依照引用標準的不同,紅外線的波長最短約在700 nm和800 nm之間,但可見光和紅外線沒有明確定義的邊界。人眼對於波長700 nm以上的光較不靈敏,因此若用一般強度的光源發射較長波長的光,人眼無法看到。但用一些高強度的近紅外線光源(例如紅外線雷射、紅外線LED、或是將可見光移除後的日光),可以偵測到約780 nm的紅外線,會被視為紅光。強度再高一些的紅外線光源可以讓人眼偵測到波長1050 nm的紅外線,會被視為暗紅色的光束。因此會造成周圍全暗的情形下,用人眼可以看到近紅外線的問題(一般會用間接照明的方式改善此問題)。葉子在近場外線下會格外的明亮,若用紅外線濾鏡濾除可見光,並有一段時間讓眼睛去適應經過紅外線濾鏡後特別暗的影像,人眼有可能可以看到在紅外線下發光的樹葉,也就是羅勃·伍德效應[17]。
公元1666年牛頓發現光譜並測量出3,900埃—7,600埃(400nm—700nm)是可見光的波長。1800年4月24日英國倫敦皇家學會的威廉·赫歇爾發表太陽光在可見光譜的紅光之外還有一種不可見的延伸光譜,具有熱效應。他所使用的方法很簡單,用一支溫度計測量經過稜鏡分光後的各色光線溫度,由紫到紅,發現溫度逐漸增加,可是當溫度計放到紅光以外的部份,溫度仍持續上昇,因而斷定有紅外線的存在。在紫外線的部份也做同樣的測試,但溫度並沒有增高的反應。紫外線是1801年由RITTER用氯化銀感光劑所發現。
底片所能感應的近紅外線波長是肉眼所能看見光線波長的兩倍,用底片可以記錄到的波長上限是13,500埃,如果再加上其它特殊的設備,則最高可以達到20,000埃,再往上就必須用物理儀器偵測了。
紅外線輻射源可區分為四部份:
地球表面及雲會吸收太陽發射的可見光及輻射,再以紅外線的形式發射到大氣層中。大氣中的特定物質(例如雲裡的水滴和水蒸氣,還有二氧化碳、甲烷、一氧化氮、六氟化硫及氟氯碳化物[18]等)會吸收紅外線,再發射回地球。溫室效應可以提高大氣層及地表的溫度[19]。
紅外線可用在軍事、工業、科學及醫學的應用中。紅外線夜視裝置利用即時的近紅外線影像,可以在不被查覺的情形下在夜間觀察人或是動物。紅外線天文學利用有感測器的望遠鏡穿透太空的星塵(例如分子雲),檢測像是行星等星體,以及檢測早期宇宙留下的紅移星體[20]。紅外線熱顯像相機可以檢測隔絕系統的熱損失,觀查皮膚中血液流動的變化,以及電子設備的過熱。紅外線穿透雲霧的能力比可見光強,像紅外線導引常用在飛彈的導航、熱成像儀及夜視鏡可以用在不同的應用上、紅外天文學及遠紅外線天文學可在天文學中應用紅外線的技術。
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.