在數學中,特別是(高階)範疇論中,高維代數是指對範疇化結構的研究。其在非阿貝爾代數拓撲與抽象代數的推廣中有應用。
定義高維代數的第一步是高階範疇論中2-範疇的概念,以及二階範疇的更「幾何化」的概念。[1] [2][3]
更高級的概念因此定義為範疇的範疇,或稱為超範疇。這將範疇的標記推廣到高維——範疇被視為可以解釋抽象範疇基本理論(ETAC)的勞維爾公理的任何結構。[4][5][6][7]
因此,超範疇可被視作元範疇、[8]多範疇、多圖或有色圖。
超範疇的概念於1970年被首次提出,[9]隨後在理論物理(特別是量子場論和拓撲量子場論)、數理生物學及數理生物物理學中得到了應用。[10]
高維代數中的其他途徑涉及:弱2-範疇、弱2-範疇的同態、可變範疇(又稱索引或參數化範疇)、拓撲斯、增廣範疇 以及內範疇。
主條目:二維廣群
高維代數中,二維廣群是一維廣群的推廣,[11]後一種廣群可視為所有態射都可逆的特殊範疇。
二維廣群通常用來捕捉幾何對象的信息,如高維流形(或n維流形)。[11]一般來說,一個n維流形是在局部上像是n維歐幾里得空間的空間,而整體結構可能是非歐的。
1976年,羅納德·布朗在ref.[11] 中首先提出了二維廣群,並進一步發展了它在非阿貝爾代數拓撲中的應用。[12][13][14][15]與其相關的「雙」概念指的是二維李代數胚,以及更一般的R代數體概念。
在量子場論中有量子範疇[16][17][18]和量子二維廣群。[18]我們可以把量子二維廣群看作是通過2-函子定義的基本廣群,這樣就可由弱2-範疇Span(Groupoids)的視角思考量子基本廣群(QFGs)這一物理上有意義的情況,然後為流形和配邊構造2-希爾伯特空間和2-線性映射。下一步,我們將通過此類2-函子的自然變換來獲得帶角的配邊。於是有說法稱,在規範群SU(2)的作用下,「擴展的拓撲量子場論可以給出等同於量子引力的蓬扎諾-雷其模型的理論」;[18]相似地,圖拉耶夫-維羅模型也可以通過SUq(2)的表示得到。因此,我們可以用對稱性給出的變換廣群來描述規範理論——或者許多種量子場論(QFTs)及局域量子物理的狀態空間。例如,對於規範理論的情況,我們可以用作用於狀態的度規變換來描述狀態空間,在這種情況下狀態就是連接。在與量子群相關的對稱性的情況下,我們會得到量子廣群的表示範疇(representation category)的結構,[16]而非廣群的表示範疇的2-向量空間。
Batanin, M.A. Monoidal Globular Categories As a Natural Environment for the Theory of Weak n-Categories. Advances in Mathematics. 1998, 136 (1): 39–103. doi:10.1006/aima.1998.1724 .
Lawvere, F. W.: 1966, The Category of Categories as a Foundation for Mathematics., in Proc. Conf. Categorical Algebra – La Jolla., Eilenberg, S. et al., eds. Springer-Verlag: Berlin, Heidelberg and New York., pp. 1–20. http://myyn.org/m/article/william-francis-lawvere/ 網際網路檔案館的存檔,存檔日期2009-08-12.
Brown, Ronald; Spencer, Christopher B. Double groupoids and crossed modules. Cahiers de Topologie et Géométrie Différentielle Catégoriques. 1976, 17 (4): 343–362 [2023-08-27]. (原始內容存檔於2023-10-04).
Morton, Jeffrey. A Note on Quantum Groupoids. C*-algebras, deformation theory, groupoids, noncommutative geometry, quantization. Theoretical Atlas. 2009-03-18 [2023-08-27]. (原始內容存檔於2023-10-09).
- Brown, R.; Higgins, P.J.; Sivera, R. Nonabelian Algebraic Topology: filtered spaces, crossed complexes, cubical homotopy groupoids. Tracts Vol 15. European Mathematical Society. 2011 [2023-08-27]. ISBN 978-3-03719-083-8. arXiv:math/0407275 . doi:10.4171/083. (原始內容存檔於2016-06-12). (Downloadable PDF available (頁面存檔備份,存於網際網路檔案館))
- Brown, R.; Mosa, G.H. Double categories, thin structures and connections. Theory and Applications of Categories. 1999, 5: 163–175 [2023-08-27]. CiteSeerX 10.1.1.438.8991 . (原始內容存檔於2023-10-04).
- Brown, R. Categorical Structures for Descent and Galois Theory. Fields Institute. 2002.
- Brown, R. From groups to groupoids: a brief survey (PDF). Bulletin of the London Mathematical Society. 1987, 19 (2): 113–134 [2023-08-27]. CiteSeerX 10.1.1.363.1859 . doi:10.1112/blms/19.2.113. hdl:10338.dmlcz/140413. (原始內容存檔 (PDF)於2023-08-27). This give some of the history of groupoids, namely the origins in work of Heinrich Brandt on quadratic forms, and an indication of later work up to 1987, with 160 references.
- Brown, Ronald. Higher Dimensional Group Theory. groupoids.org.uk. Bangor University. 2018 [2023-08-27]. (原始內容存檔於2023-08-27). A web article with many references explaining how the groupoid concept has led to notions of higher-dimensional groupoids, not available in group theory, with applications in homotopy theory and in group cohomology.
- Brown, R.; Higgins, P.J. On the algebra of cubes. Journal of Pure and Applied Algebra. 1981, 21 (3): 233–260. doi:10.1016/0022-4049(81)90018-9.
- Mackenzie, K.C.H. General theory of Lie groupoids and Lie algebroids. London Mathematical Society Lecture Note Series 213. Cambridge University Press. 2005. ISBN 978-0-521-49928-6. (原始內容存檔於2005-03-10).
- Brown, R. Topology and Groupoids. Booksurge. 2006 [2023-08-27]. ISBN 978-1-4196-2722-4. (原始內容存檔於2023-04-29). Revised and extended edition of a book previously published in 1968 and 1988. E-version available from website.
- Borceux, F.; Janelidze, G. Galois theories. Cambridge University Press. 2001. ISBN 978-0-521-07041-6. OCLC 1167627177. (原始內容存檔於2012-12-23). Shows how generalisations of Galois theory lead to Galois groupoids.
- Baez, J.; Dolan, J. Higher-Dimensional Algebra III. n-Categories and the Algebra of Opetopes. Advances in Mathematics. 1998, 135 (2): 145–206. Bibcode:1997q.alg.....2014B. S2CID 18857286. arXiv:q-alg/9702014 . doi:10.1006/aima.1997.1695.
- Baianu, I.C. Organismic Supercategories: II. On Multistable Systems (PDF). The Bulletin of Mathematical Biophysics. 1970, 32 (4): 539–61 [2023-08-27]. PMID 4327361. doi:10.1007/BF02476770. (原始內容存檔 (PDF)於2021-06-27).
- Baianu, I.C.; Marinescu, M. On A Functorial Construction of (M, R)-Systems. Revue Roumaine de Mathématiques Pures et Appliquées. 1974, 19: 388–391.
- Baianu, I.C. Computer Models and Automata Theory in Biology and Medicine. M. Witten (編). Mathematical Models in Medicine 7. Pergamon Press. 1987: 1513–77 [2023-08-27]. ISBN 978-0-08-034692-2. OCLC 939260427. CERN Preprint No. EXT-2004-072. . (原始內容存檔於2011-05-16).
- Higher dimensional Homotopy. PlanetPhysics. (原始內容存檔於2009-08-13).
- Janelidze, George. Pure Galois theory in categories. Journal of Algebra. 1990, 132 (2): 270–286. doi:10.1016/0021-8693(90)90130-G.
- Janelidze, George. Galois theory in variable categories. Applied Categorical Structures. 1993, 1: 103–110. S2CID 22258886. doi:10.1007/BF00872989..