Remove ads
来自维基百科,自由的百科全书
鋰離子電池(英語:Lithium-ion battery或英語:Li-ion battery)是一種可重複充電電池,它主要依靠鋰離子在正極和負極之間移動來工作。鋰離子電池使用一個嵌入的鋰化合物作為一個電極材料。目前用作鋰離子電池的正極材料主要常見的有:鈷酸鋰(LiCoO2)、錳酸鋰(LiMn2O4)、鎳酸鋰(LiNiO2)及磷酸鐵鋰(LiFePO4)。[6] 該領域的重要進展是約翰·古迪納夫,斯坦利·惠廷厄姆,拉奇德·雅扎米和吉野彰於1970年代開始並發展到1980年代,1991年,Sony和Asahi Kasei達成了商業化的共識。古迪納夫、惠廷厄姆和吉野彰因開發鋰離子電池而獲得了2019年諾貝爾化學獎。
此條目需要補充更多來源。 (2013年12月3日) |
這些鋰離子電池與其發展產品是在消費電子領域常見的。它們是可攜式電子設備中可充電電池最普遍的類型之一,具有高能量密度,無記憶效應,在不使用時只有緩慢電荷損失等特點。除了消費類電子產品,越來越進步的鋰離子電池也越來越普及,可用於軍事,純電動汽車和航空太空[7]。例如,磷酸鋰鐵電池正在成為鉛酸蓄電池的一種常見的替代蓄電池,在歷史上鉛酸蓄電池用於高爾夫球車和多用途車,但這種高效的新型電池已經能夠突破舊有鋰電池與鉛酸電池的各種缺點,達成全面替代的目標。
此外,鋰離子電池容易與下面兩種電池混淆:
1970年代在埃克森工作的,而現在在賓漢頓大學工作的斯坦利·惠廷厄姆最早提出鋰離子電池。他採用硫化鈦作為正極材料,金屬鋰作為負極材料,製成首個鋰離子電池。[8]電池使用金屬鋰會存在安全隱患,因為鋰是一種高度反應性的元素;由於在正常大氣條件下水和氧的存在,鋰會燃燒[9]。其研究結果是,把研究方向轉移到尋求用鋰化合物代替金屬鋰且仍能夠接受和釋放鋰離子。
1991年Sony成功開發鋰離子電池。它的實用化,使人們的行動電話、筆記型電腦等攜帶式電子設備重量和體積大大減小,使用時間大大延長。由於鋰離子電池中不含有重金屬鎘,與鎳鎘電池相比,大大減少了對環境的污染。
隨著開發的進展,鋰離子電池的性能和容量繼續提高。
現在3C產業常提到的鋰離子電池其實是鈷酸鋰電池,廣義的可充放鋰離子電池是指由一個石墨負極,一個採用鈷、錳或磷酸鐵的正極,以及一種用於運送鋰離子的電解液所構成。而一次鋰離子電池則可以鋰金屬或者嵌鋰材料作為負極。
鋰離子電池產業發展20多年來一直集中在3C產業為主,較少應用在市場經濟規模更大的儲能和動力電池(瞬間需要較大電流)市場,該市場涵蓋純電動車、油電混合車、中大型UPS、太陽能、大型儲能電池、電動手工具、電動摩托車、電動自行車、航空太空設備與飛機用電池等領域。
主要原因之一是過去鋰電池採用的鈷酸鋰正極材料(LiCoO2,就是現在最常見的鋰離子電池)成本較高,並且難以應用在耐受穿刺、衝撞和高溫、低溫等條件等特殊環境。更重要的是,因無法滿足人們對安全的絕對要求而飽受詬病。
同時,鈷酸鋰電池也無法達到快速充電與完全避免二次污染等目的,而且,一定要設計保護電路以防止過度充電或過度放電,否則就會造成爆炸等危險,甚至出現如Sony電池爆炸導致全球品牌NB業者投下巨資回收的情況。
另外,鈷的價格愈來愈高昂,全球鈷礦最大生產國剛果民主共和國,戰亂紛擾多,導致鈷礦價格不斷升高。鈷酸鋰電池的粉體因鈷礦價格不斷上漲,現在已從原先的每公斤40美元漲價到60~70美元。磷酸鋰鐵粉體依品質好壞,每公斤售價在30~60美元。
這20年來,各國產學界早已投入無數的研發人力與資源,不斷尋找能夠取代或解決LiCoO2問題的新材料,因為,據統計,全球動力與儲能電池市場的經濟規模總量每年高達500億美元,遠大於鈷酸鋰電池每年55~60億美元的胃納量。從2006年7月至今,包括投入能源儲存設備的Deeya Energy,發展薄膜鋰電池的Infinite Power Solution,看好新世代鋰離子電池─磷酸鋰鐵電池產業(LFP,Lithium Ferrous Phosphate)的美國A123 Systems、台灣Aleees和加拿大Phostech Lithium等業者,快速從全球創投和其他資金來源募來超過3億美元的資金。
因此,鋰離子電池廣泛應用於消費電子產品、軍用產品、航空產品等。
儲存時的充電電量 | 儲存溫度0℃ | 儲存溫度25℃ | 儲存溫度40℃ | 儲存溫度60℃ |
---|---|---|---|---|
40%~60% | 2%/年 | 4%/年 | 15%/年 | 25%/年 |
100% | 6%/年 | 20%/年 | 35%/年 | 80%/6月 |
現在常見的圓柱型鋰離子電池規格分別有26650/21700/18650/17670/18500/18350/17500/16340/14500/10440,前兩位數表示電池直徑(單位:公釐),第三、第四位數表示電池長度(單位:公釐),第五位數代表電池外觀形狀(0:代表電池外觀為圓柱型),以18650電池為例,其直徑是18公釐,長度是65公釐,外觀為圓柱型。14500電池尺寸接近AA電池(台規三號電池、中國大陸五號電池),10440電池則接近AAA電池(台規四號電池、中國大陸七號電池)。另外電池正極形狀也分為平頭與尖頭,平頭電池全長即標準尺寸,而尖頭全長則要再增加約0.5公釐。
正極材料的選擇決定了電池的容量、安全性和老化特性。其中鈷特別提供了極佳的容量和老化特性,但與其他的材料相比,鈷的安全性就差了些。
「LiNiO2」(鎳鋰電池)
「LiNi0.8Co0.2O2」(鎳鈷鋰電池)
「LiMn2O4」(錳鋰電池)
「LiNi0.3Co0.3Mn0.3O2」(三元電池)
磷酸鐵鋰(LFP)電池
鎳鈷鋰電池是鎳鋰電池和鈷鋰電池的固溶體(綜合體),兼具鎳鋰和鈷鋰的優點,一度被產業界認為是最有可能取代鈷鋰電池的新正極材料,但安全性還無法有更大突破。
因此,全球相關業者的主要發展集中在基於錳或磷酸鐵的正極以提昇其安全性,但提高安全性的代價是電池容量略有下降,且使電池的老化速度加快。
鋰鎳電池的成本較低且電容量較高,不過,製作過程困難且材料性能的一致性和再現性差,最嚴重的是依然有安全性問題。
磷酸鐵鋰電池則同時擁有鈷鋰、鎳鋰和錳鋰的主要優點,但不含鈷等貴重元素,原料價格低且磷、鋰、鐵存在於地球的資源含量豐富,不會有供料問題,而且,工作電壓適中(3.2V)、電容量大(170mAh/g)、高放電功率、可快速充電且循環壽命長,在高溫與高熱環境下的穩定性高,是目前產業界認為較符合環保、安全和高性能要求的鋰離子電池。
不過,磷酸鐵鋰(LFP)電池壓實密度相對較低、低溫性能欠佳,放電電壓過於平穩造成難以估計餘電量,並且正極材料存在專利爭議。目前主要的3種技術和化合物分別由全球3家業者掌握,包括源自美國德州大學的LiFePO4,以及另外兩種Nanophosphate和NanoCocystallineOlivine(NCO)。
磷酸鐵鋰電池的規格分別為1、2、3、5、7號,其中5、7號最常見,5號磷酸鐵鋰電池規格同等AA電池,7號則同等AAA電池。
多枚串聯鋰離子電池的充電方法較為複雜,分3個階段:
和所有化學電池一樣,鋰離子電池也由三個部分組成:正極、負極和電解質。習慣上,鋰離子進入正極材料的過程叫「嵌入」,離開的過程叫「脫嵌」;鋰離子進入負極材料的過程叫「插入」,離開的過程叫「脫插」。
負極半反應是:
總體反應有局限性。過放電supersaturates鋰鈷氧化物,導致產生的氧化鋰[29],可能是由以下的不可逆反應:
鋰離子電池中的電解液可以是凝膠體、聚合物(鋰離子/鋰聚合物電池)、或凝膠體與聚合物的混合物。因為目前尚未發現能夠在室溫條件下有效運送鋰離子的聚合物,所以大多數的「塑膠封袋」鋰離子/ 鋰聚合物電池事實上都是結合凝膠體和聚合物的混合型電池。
正極或負極必須具有類似海綿的物理結構,以釋放或接收鋰離子。在放電時,鋰離子從負極材料移出至電解液,再像水進入海綿一樣地進入正極材料,這個過程被稱為嵌入(Intercalation)。充電的過程則完全相反。
正極材料 | 平均輸出電壓 | 能量密度 |
---|---|---|
LiCoO2 | 3.7 V | 140 mAh/g |
Li2Mn2O4 | 3.7 V | 100 mAh/g |
LiFePO4 | 3.3 V | 100 mAh/g |
Li2FePO4F | 3.6 V | 115 mAh/g |
由於電動汽車的在全世界的普及,鋰離子電池製造的動力電池淘汰量開始大幅增加,造成環保威脅和資源浪費。預計到 2030 年,約 100-120 GWh 的電動車動力電池將汰役。[30] 因此,建議對此類汰役動力電池進行回收再利用。[31][32] 一些汰役的動力電池仍有約80%的初始容量。[33][34][35] 它們可以重新利用並重新用作二次應用,例如為儲能係統中的電池提供服務。[36][37][38][39] 各國政府已意識到這一緊迫問題,並準備推出應對汰役電池的政策,如編碼原則、追溯管理系統、製造工廠指南、拆解工藝指南、剩餘能量測量、稅收抵免、退稅和財政支持等。[40][41][42][43]
汰役電動車電池的二次應用標準目前仍是新興技術。由保險商實驗室 (UL) 發布的 UL 1974 是少數的標準之一。[44] 文件中給出了汰役動力電池電芯、電池組、模組安全操作和性能測試的一般流程,但未能詳細說明步驟和具體內容。對於現實世界中的應用,現有電池、電池組和模組的設計、外形尺寸和材料通常彼此之間存在很大差異。制定一致的技術流程很困難。此外,公開文獻中關於所應用的詳細技術程序的資訊目前仍相當缺乏。除了 Schneider等人展示了手機用小型圓柱鎳氫電池的翻新流程,[45][46] Zhao等人發表了中國一些電動汽車鋰離子電池併網應用的成功經驗,[47] 和 Chung 報告 UL 1974 中描述的有關 LiFePO4 汰役電池的測試程序及相關數據。[30]
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.