Remove ads
来自维基百科,自由的百科全书
地平坐標系(英語:Horizontal coordinate system),是天球坐標系統中的一種,以觀測者所在地為中心點,所在地的地平線作為基礎平面,將天球適當的分成能看見的上半球和看不見(被地球本身遮蔽)的下半球。上半球的頂點(最高點)稱為天頂,下半球的頂點(最低點)稱為地底。
地平坐標系統由兩個夾角來定義一個天體位置的極座標:
因此地平坐標系有時也被稱為高度/方位(Alt/Az)坐標系統。
地平坐標系統是固定在地球上而不是恆星,所以天體出現在天球上的高度和方位會隨著時間,在天球上不停的改變。另一方面,因為基礎平面是觀測者所在地的地平面,所以相同的天體在相同的時間從不同的位置觀察,也會有不同的高度和方位。
地平坐標系在測量天體的出沒上非常的好用,當一個天體的高度為0°,就表示他位於地平線上。此時若其高度增加,就代表上升;若高度減少,便是下降。然而天球上所有天體的運動都受到由西向東的周日運動支配,所以與其笨拙的去觀察高度是增加或減少,不如改為觀察天體的方位更容易來判斷是上升或是下降:
但在下面的特殊位置則例外:
需要注意的是:前面所考慮的衹是理論上的幾何地平,即不考慮地球大氣層對天體位置的影響,讓觀測者的地平線完全以理想的海平面構成。因為地球有弧度,實際上看見的視地平面會隨著觀測者的高度增加而降低(出現負值)。另一方面大氣層也會將地平線下半度的天體折射到地平線上。
只要知道觀測者的地理坐標與時間,就可以將地平坐標轉換成赤道坐標,或是反過來將赤道坐標轉換成地平坐標。
在以下公式中,以代表方位,代表高度。
不管赤緯或地理緯度, 都是以北極點為+90°,在赤道是0°,南極點是-90°。
在地平座標轉換前一般會先計算天體的本地時角 (Local Hour Angle, LHA) (或稱地方時角)。天體的本地時角為觀測時通過本地子午圈的天球經線的赤經值 與天體赤經 的差值 (), 也代表星體所在的赤經線與南方子午線在赤道面的夾角. 由於方位角是以南方(或北方)為基準, 所以用時角來轉換到方位角頗為直覺. 上述的 正式名稱為本地恆星時 (Local Sidereal Time, LST, ). 想像當地球以穩定的自轉速度旋轉時, 在每個恆星日, 南方子午線上會陸續通過赤經為 , ..., , ..., 東昇西落的星星, 就可想像 可以當成觀測本地的一個時鐘, 上面顯示的時鐘刻度就是本地恆星時 (), 換算成一小時 15 度, 也就是觀測地經線相對於天球赤道起點 (春分點, ) 的旋轉角度. 而天體的時角就代表從天體中天時刻到觀測時刻所經歷的時間或轉動的角度. 顯然, 本地恆星時由觀測時間及觀測地經度決定 (). 所以, 天體的時角也由天體的赤經及共同決定,故有時也會寫成 或 , 代表赤經在特定觀測時地的替代表示方式. 這也是為什麼在空間座標轉換時, (星體座標)會用去除時地標誌的天體時角(及赤緯)來代替其赤經(及赤緯)的原因. 總結上述說明, 星體的時角與本地恆星時的關係及計算公式為:
如上所示, LST 可由 GST 加計本地地理經度求得. 其中, GST 為格林威治恆星時, 亦即 0 度經線上之觀測站的 LST. 上述公式中, 241.3872 (度)代表在參考曆元 2440000.5 JD (儒略日, Julian Date) (相當於1968/5/24.0) 時, 經過格林威治本初子午線的遙遠恆星的赤經. 360.9856091 (度/太陽日)代表一天 (一個平太陽日) 之內地球轉動的度數. 乘以 (用儒略日 jd 表示) 與 的差值, 代表至觀測時間 總共新增的轉動度數. 當然, 這些角度都要調整到 [0, 360] 或 [-180, +180] 的範圍. 由 LST 就可以知道觀測時通過本地子午線的星體的赤經了.
一般導航用的天文年鑑或曆書 (almanac), 並無法把主要天文導航天體(如太陽, 月亮, 行星, 及約 57 顆導航用亮星), 在所有城市的本地時角, 都刊印出來, 僅能列印他們在格林威治所觀測到的天體時角, 即格林威治時角 (Greenwich Hour Angle, GHA), 再由領航員從 的關係中加計經度推算出 . 因此, 上列公式也把 GHA 的相關式子列出來做為參考.
此外, 對同一觀測目標 (), 在同一觀測地 ()而言:
也就時說, 在同一觀測地, 恆星時差()與天體時角差()是相同的, 且都跟觀測時間差()成正比. 只不過恆星時鐘與太陽時鐘的時間長度及速度不一樣, 地球公轉一周看到遠處恆星的次數比看到近處太陽的次數正好多1次. 所以, 恆星時鐘比太陽時鐘走得快一點. 若要把恆星時差換算成手錶上的時差(平太陽時), 就必須多除以 這個係數 (). 在許多有關天文事件時間 (jd1) 或時差(duration) (Δ t) 的計算問題上 (如日出時刻、日落時刻、星體中天時刻、曙暮光始末時刻、日照時間或白天長度) [1], 要記得用這個比例常數來調整兩種不同時間的刻度. 例如, 1 恆星日 () 的時間長度大約相當於 (平太陽時), 與一天(太陽日)的長度差了約 4 分鐘.
赤道坐標轉為地平坐標時, 可以透過以下的關係, 由天體的赤經 () 及赤緯 (), 求得天體的方位角() 及高度角 ()。
根據以上關係式, . 則可由 求得.
有種方式是把 相除後消去項,而化簡為, 再用 來求 。但是, 使用的反正切函數的值域只在[-90, 90] 度之間, 無法完整涵蓋 [0, 360] (或 [-180,+180]) 度的方位角. 而在 0 到 360 (或 [-180,+180]) 度之間, 值相同的角度有兩個 (). 例如45°和225°是完全不同的方位, 但正切值相同。因此, 必須根據 及 的正負符號, 決定方位角落在哪個象限. 如果這些同值的角度落在非值域的第二及第三象限, 即 X 值為負時, 必須 +/-180 度, 才會得到正確的 . 若為 X=0 (Y/X 為無限大) 的特殊狀況, 則依 的正負符號, 定義其方位角為 +90 或 -90 度。若 X, Y 皆為 0 (即天體在天頂), 則可依習慣定義方位。
其實不少程式語言(如 C, C++, Java, Python) 都有提供一個叫做 ATAN2(Y,X) (或 ATAN2(X,Y)) 的反三角函數 (atan2是已將象限納入考量的反正切函數), 可算出 的值, 並根據 (X,Y) 的正負號判斷所屬象限, 從而決定 (X, Y) 向量與 X 軸的夾角, 讓他的值域涵蓋 360 度角. 這對決定方位角非常方便, 省掉自己編寫程式碼來判斷象限的麻煩. 至於高度角 的求解, 可令第一個公式等號右邊的值為 , 用 求 值即可, 不必再做調整. 因為, 的值域為正負 90 度, 正好對應地平線上下夾角 (這狀況同樣適用於之後在計算赤經赤緯時對應北南半球緯度).
需要特別注意的是, 上面計算出來的方位角 其實指的是以南方為0度向西遞增的方位角, 而不是一般文獻指稱的, 以北方為0度, 向東遞增的方位角. 這種一般文獻上所稱的 (北)方位角 若表示成, 則與上列計算出來的 , 或特意表示成 的 南方位角, 兩者相差正好 180 度, 可以用 計算出來, 並調整到 0~360 度即可. 由於很多人不明白其間的差異, 因此由其他文獻上抄錄來的公式, 常因公式中某些項目的正負符號與其他來源(如維基網頁)不同, 而誤以為錯誤, 甚至錯誤更改維基百科的公式而不自知 (可察看本頁歷史編輯紀錄). 其算出的結果也可能與預期有 180 度的差異. 所以, 參照不同來源公式時, 必須小心. 而之所以會有人定義這種南方為零的南方向角, 主要是一些北半球的觀星者平時觀測的星體以南方星體為主. 因此, 以南方為零度方位, 有其方便性.
上列公式並不容易理解其來由, 若移項重新整理, 並刻意以 提醒此方位角為南方位角, 則可得:
其矩陣形式則為:
,
其中, 最右邊要被轉換的行向量表示赤道極座標 或 () 投影在赤道面某選定直角座標的三個分量 , 等號左邊的轉換後所得行向量表示地平極座標 投影在地平面某選定直角座標的三個分量 . 中間的轉換矩陣代表將赤道座標沿著子午線由天球北極 (Z 軸) 轉向赤道面 (X軸) 轉動 90- 度角的座標旋轉矩陣. 這樣的矩陣式說明了原公式的直覺意義, 對於需要時常計算的觀星者,航海家或天文計算程式員而言比較不必硬記, 也較不容易弄錯.
上列矩陣轉換公式, 也讓地平座標轉赤道座標變得容易. 事實上, 只要把轉換對象調換, 並進行逆轉換即可. 換句話說, 前式的兩個行向量只要互相調換, 並把原來的轉換矩陣變成他的逆矩陣 (inverse matrix) 即可得到反向轉換公式. 有趣的是, 座標轉換的逆矩陣也是他的轉置矩陣 (transpose matrix), 也就是行列互換的矩陣, 因此並不需要費力去求原轉換矩陣的逆矩陣. 因此, 我們可以輕易得到:
亦即
, , .
其中, 為觀測者所在經度 於觀測時間 的本地恆星時.
前面已提到, 實用上有兩種方位角, 前面計算的其實是南方位角 . 一般官方文獻所提的方位角為北方位角 . 為了避免混淆, 以下將使用 時的座標轉換公式也一併列出, 以便相互對照.
赤道轉地平, 求 的方法除了用先前方法算出 再加 180 度之外, 也可以將原來的轉換公式中的 跟 等號右側方程式都加負號, 並把等號左側的 改成 即可. 其結果是:
, , 或者 , . 同時:
兩者相除後,除正負號的區別外,形式完全一樣,已無法區分這裡的方位角是南方位角或北方位角。且已失去判斷象限的訊息,必須由分子分母的正負來輔助判斷。這跟之前討論如何由 (即 ) 求 的情況一樣。
有興趣者可以把他轉成矩陣轉換式, 會發現這樣的轉換是經過兩道轉換手續, 即先轉成原先的南地平, 再把 X 軸轉 180 度, 也就是 X 值跟 Y 值都取負號.
要得到使用 時的地平轉赤道座標轉換公式, 只要將 代入原來的南地平轉赤道的轉換公式即可. 此代換會得出, , , 因此, 有以下轉換公式:
, , .
其中, 為觀測者所在經度 於觀測時間 的本地恆星時. 注意, 其實與 是相同的兩組赤道座標,只是以 及 表達時,形式不同而已。
比較 跟 會發現, 兩者的轉換公式長得完全一樣, 不同的只是符號的代換. 把 跟 分別與 跟 互相代換就會得到另一組轉換公式. 這是因為赤道轉北地平的轉換矩陣(即矩陣式中的兩個矩陣相乘)是對稱矩陣, 所以它的逆矩陣 (已知等於轉置矩陣) 跟原轉換矩陣是一樣的. 所以, 除了符號互相替換之外, 公式的形式完全相同. 這個有趣的結果可以有兩個應用. 第一,是可以由兩個方向的轉換矩陣或轉換公式的形式是否一樣來判斷公式裡的方位角到底是不是以北方為零度的方位角. 第二,如果採用 為方位角, 則撰寫轉換程式碼時其實只需要寫一個函數.
赤道座標與地平座標之轉換, 牽涉到觀測時間 或 或 , 觀測位置(), 觀測天體座標 () 或 ( 和觀測者地面量測的視角及數據. 透過這些相依關係, 只要固定某些變數或進行相關測量, 就可以求得其他感興趣的變數, 進行預測或量測. 這在天體追蹤, 觀測活動規劃, 個人位置定位, 天文導航 (celestial navigation) 等方面, 應用極為廣泛. 舉例而言:
天體的出沒及持續時間,可以由前述中的高度角及時角的關係推導出來。其中, 時角隱藏時間()、觀測地經度()、觀測天體赤經(), 是計算與時間相關的問題時,會被檢視的變數。
天體出沒時,按理說其高度角應該為。但由於不同天體視直徑()及觀測地的氣候條件(如大氣折射效應, Refraction)或周遭地理狀況之不同(如海拔及障礙物),未必為零。
所以,計算天體(含太陽)的實體或虛像出現或隱沒時,高度角一般由以下幾個可選的參數決定[1]:
其中,
曙暮光的標準並非依據客觀的太陽物理數據,而是依據不同人群受日光出現之影響程度所訂定的經驗標準。因此有民用曙暮光 (civil twilight)、航海曙暮光 (nautical twilight) 及天文曙暮光 (astronomical twilight) 的訂定。天文觀測一般不願受日光影響,所以希望太陽於地平線下 18 度以下的期間才進行觀測。船隻航行只要清楚看得到海天之交的弧線就可以安心航行,所以用較寬鬆的海平面下 12 度,作為航海曙暮光的標準。至於一般人民,只要天將亮夜未深之際進行作息即可,所以民用曙暮光的標準是更寬鬆的海平面下 6 度。
給定出沒時的天體高度角後,假設 為對應的時角,則計算日(星)出、日(星)落、曙暮光等事件的時間可摘要如下:
此處, 天體出現時的天體時角為,隱沒時的時角為。由於 且 ,故滿足 且在 [-180,180] 或 [0,360] 的角度有兩個, 即 。因此,其中一個為天體出現時的時角,另一個為隱沒時的時角。
若無永晝永夜之類的極端情況,則可由分別先求出星體出沒的本地恆星時,及格林威治恆星時。並以當日子夜零點的GST () 為基準,求恆星時差異。當然也可以由兩個 LST 求恆星時差異。隨後將恆星時差異調為太陽時差異。必要時將以日為單位的太陽時差異,以每日24小時換算為時:分:秒,就可求出星體出沒的時間。以下公式概括所有步驟:
天體出現在地平線上的時間,即從上升到下沉所經歷的時間,其實就是相當於兩倍 的時間。如果天體是指太陽的話,這就是白天的時間或日照時間。對其他天體而言,就是最長可觀測的時間 (不考慮曙暮光的影響的話)。
天體出沒的方位角,顯然只跟天體所在的赤緯平行圈及觀測地緯度有關,與出沒時間無關。所有赤緯相同的天體都在同一天球赤緯平行圈上,該平行圈與地平線交於相同的兩點,其方位即天體出或沒時的方位。給定出沒時的天體高度角 及觀測地緯度 ,假設 及 分別為對應的南方位角及北方位角,則該方位角可計算如下 (如果有出沒狀況的話):
另外, 也可以直接由 的公式, 求解日出日落時的北方位角,
以上, 的公式,不只可以求解日升日落(星升星落)(即 ) 的狀況,也可以求一般狀況下的天體高度及方位角。
這時常應用在天文航海或天體導航 (Celestial Navigation) 中的截距法 (Intercept Method)。在此法中,領航員為了確定自身的經緯度,必須計算在某個假設的地理位置 (AP, Assumed Position) 上,導航天體會被觀測到的計算高度 (通常記為 , 相當於公式中的 ) 及方位角 (北方位角通常記為 , 相當於公式中的 ),再與實際觀測到的高度角 (通常記為 ) 比較,來決定應該將 AP 往天體的地理位置 (GP, Geographic Position, 即天體在地球表面的星下點位置) 方向前進或後退若干海里,以得到航行器本身實際的經緯度。
如果觀測到的高度角大於在 AP 的計算高度 (),代表航行器比假設位置更靠近天體。這就好像面對遠方導航的燈塔(天體)時,越靠近燈塔,所測量到的塔頂高度角越大。在此情況下,就應把 AP 的座標點,沿計算方位角 Zn 的方向,往天體(GP)方向推進,以推得航行器本身的位置。反之,若 ,就應把 AP 的座標往 Zn 的相反方向後退,遠離天體,來推得航行器本身的位置。這種直觀的位置修正法則,一般簡記為 HoMoTo 法則 (if HO is MOre than Hc, move AP TOward GP for a fix.)
以上所選的 AP 通常是利用其他航位推測法 (如航速及水流/風的速度) 所獲得的大略位置,故與實際位置所推算的導航天體方位角及高度角不會相差太多。但透過星體導航,可以得到更精確的位置,因為星體的位置可以精密推算得到,變成所有航行器都可以參考的 '燈塔'。至於 AP 往前推進(或後退)的距離,稱為截距距離 (intercept distance),可以由 推得。這是因為觀測地與 GP 的角距離為 , 等於天體的天頂距 (ZD, Zenith Distance)。所以,觀測地與 AP 的角距離為 。而 1 海里 (nautical mile, nm) 的定義為地表航行 1 分角的平均距離 (約 1.852 km)。故可換算截距距離為高度角差距乘以每一分角度一海里(或每一度60海里)。
火箭、人造衛星、彈道飛彈、太空梭、太空船也可以用明亮的恆星執行導航任務。執行此類導航的裝置通常稱為恆星追蹤儀 (Star Tracker),或恆星追蹤器、跟星儀、星象儀、星光探測器等等。多數的恆星追蹤儀內部存有已知位置的亮星赤經赤緯資料庫。航行途中,追蹤儀透過一個或一個以上的相機鏡頭或望遠鏡獲取視野內的星空影像,並將所拍攝的影像與資料庫裡的亮星比對,辨識出視野內的恆星或星座。並從鏡頭感光器上的恆星亮點與鏡頭的相對角度,求出飛行器的姿態(altitude)及定位。就像人類從天空辨識到北斗七星及相對高度方位,從而瞭解所在位置一樣。
對於固定軌道的彈道飛彈而言,則可預先計算每個預訂時刻在預定位置可以觀察到的亮星,及其相對於飛行路徑的假想地平面的高度角及方位角。並從實際的觀測值與計算值的差距,產生錯誤修正訊號,以修正其飛行軌跡,最終將飛彈導引至目的地。[3] 其原理類似前述的截距法。但所有修正都由飛行電腦及導航機構自動完成。
在實際運用上,天體導航有時會與其他導航系統結合,截長補短,以提高導航的精確度。例如,恆星追蹤儀可能跟慣性導航系統 (INS, Inertial Navigation System) 結合,形成所謂的星光慣性導航系統 (Stellar Inertial Navigation Systems)。
在地平坐標系統中,有好幾種方法可以計算太陽的視位置。
完整和精確的計算方法可以參考比利時天文學家簡米斯的天文計算(Astronomical Algorithms)
下面是一種簡單的近似計算法的例子:
已知:
以下的公式可以算出太陽的赤緯:
其他移動的天體,如行星、彗星、小行星、月亮、行星的衛星、人造衛星、太空船等,也可以透過解克卜勒方程式,求得它們在其軌道面的即時位置,再透過適當的座標轉換,將軌道面座標轉換到赤道座標,再轉換到水平座標。這樣就可以預測它們的方位角及高度角,再以人工或自動的方式,加以追蹤。(太陽系行星位置計算及行星軌道要素 [4] 可參考 NASA 外部鏈結.)
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.