在群論中,循環群(英文:cyclic group),是指能由單個元素所生成的群。有限循環群同構於整數同餘加法群 ,無限循環群則同構於整數加法群。每個循環群都是阿貝爾群,亦即其運算是可交換的。在群論中,循環群的性質已經被研究的較為透徹,是更為複雜的代數研究中常用到的基礎工具。
Quick Facts 群論, 基本概念 ...
群論
|
|
群
|
無限維群
|
共形群 微分同胚群
環路群
量子群 O(∞) SU(∞) Sp(∞)
|
|
|
Close
令循環群 。如果存在兩個相異整數 使得 ,那麼 滿足 ,其中 是單位元素。所以對於任意整數 ,,其中 是 除以 得到的餘數,。這說明 是有限群。設 是所有這樣的正整數中最小的一個,則 可以表示為:
可以證明它同構於模 的加法群 。事實上,對每一個正整數 ,都存在唯一一個(在同構的意義上)階為此正整數 的循環群。而所有的 階循環群都和模 的同餘類構成的加法群 同構。如果一個循環群的階是無限的,那麼它同構於整數關於加法構成的群 。因此,循環群已被完全分類,是最簡單的一種群。
例如,,則 為循環群。 同構於模 的加法群:。考慮映射:
-
可以證明其為群同態,而且是對射,因此是群同構。
每一個循環群要麼同構於整數模 的加法群:,要麼同構於整數的加法群 。因此要研究循環群的性質,只需要研究 和 作為加法群的性質即可。設 是一個 階的循環群[N 1],,則:
- 為交換群。這是因為 。
- 若 為正整數,則 ,因為 。而且 是所有使得 的正整數 中最小的一個。
- 若 為無限大,則 有且僅有兩個生成元,分別對應於整數中的 和 。
- 若 為正整數,則 的各個生成元分別對應整數模 加法群中與 互質的數的同餘類。例如當 時, 的生成元有四個,分別對應著 中的四個同餘類。
- 的每一個子群都是循環群。每一個 的 階有限子群皆為整數模 的加法群。而每一個 的無限子群都可以表示成 ,同構於 。
- 設 是質數,則階為 的群都同構於 階循環群。
- 兩個循環群的直積 是循環群若且唯若 和 互質。故 同構於 ,而不是 [N 2]。
- 阿貝爾群的基本定理說明每一個有限生成阿貝爾群都是有限多個循環群的直積。
有限循環群的環圖全是有著其元素在各個角上的 邊形。下面環圖中的黑角表示是單位元素,而其他的角則為群的其他元素。一個環包括著連接著單位元素之元素的接續之次方。
More information Z1, Z2 ...
Close
n也可以是無限大,約定「n為無窮大」代表群同構於整數加法群。
和的直積並不是一個循環群。
Stallings, John, Groups of cohomological dimension one, Applications of Categorical Algebra (Proc. Sympos. Pure Math., Vol. XVIII, New York, 1968), Providence, R.I.: Amer. Math. Soc.: 124–128, 1970, MR 0255689. 特別見p. 126: "If G has two ends, the explicit structure of G is well known: G is an extension of a finite group by either the infinite cyclic group or the infinite dihedral group."
Alonso, J. M.; Brady, T.; Cooper, D.; Ferlini, V.; Lustig, M.; Mihalik, M.; Shapiro, M.; Short, H., Notes on word hyperbolic groups, Group theory from a geometrical viewpoint (Trieste, 1990) (PDF), River Edge, NJ: World Scientific, Corollary 3.6, 1991 [2014-04-01], MR 1170363, (原始內容 (PDF)存檔於2013-04-25)
- Gallian, Joseph, Contemporary abstract algebra 4th, Boston: Houghton Mifflin, 1998, ISBN 978-0-669-86179-2 (英語), especially chapter 4.
- Herstein, I. N., Abstract algebra 3rd, Prentice Hall, 1996, ISBN 978-0-13-374562-7, MR1375019, especially pages 53–60.