Loading AI tools
来自维基百科,自由的百科全书
正频率与负频率的概念,可以简单用顺时针或逆时针转动的轮子来阐释:频率带正负号,就能同时表示转动方向和频率大小,其大小用转数每秒(赫兹)或弧度每秒作为单位(1转为2π弧度)。
令ω为一非负参数,其单位为rad/sec(弧度每秒)。若角度φ随时间t变化的关系式为φ(t) = -ωt + θ,则式中斜率为-ω,称为负频率。但是当该角度用作余弦函数的参数时,其结果便与cos(ωt − θ)没有区别。同样,sin(−ωt + θ)亦与sin(ωt − θ + π)没有区别。因此,任何正弦曲线皆能以正频率来表示,相位斜率所带有的正负号不再具有意义。
但若同时观察余弦与正弦运算子时,便能确定频率的符号,因为若ω > 0,则cos(ωt + θ)比sin(ωt + θ)领先1/4圈(即π/2弧度);反之,若ω < 0,则落后1/4圈。同理,一个向量(cos t, sin t)以1 rad/sec的角速度逆时针转动,每2π秒转完一圈,而向量(cos (−t), sin (−t))则以另一个方向转动。
复指数函数亦保留ω的正负号:
[1] |
因为实部R(t)与虚部I(t)能分别比较。虽然组合了sin和cos两个函数,所以似乎比两者含有更多资讯,但通常理解其为更简单的函数,因为
所以,也可以将理解成同时包含正负频率,但其和事实上有互相抵销,故其所含资讯是并非更多,反而更少。
也许最为人熟知的负频率应用在于运算式 :
此数测量的,是函数x在区间(a, b)的一段中,所含频率ω成分的强度。若取区间为(−∞, ∞),对不同的ω求出,则得到函数X,称为x的傅立叶变换。一个简单的解释是,两个复正弦波的乘积也是复正弦波,其频率为原始频率的总和。因此,当ω为正时,乘上会使所有x(t)的频率都减少ω。x(t)恰好具有频率ω的部分,将变为零频率,即常数,而其振幅大小,即为其初始时频率为ω的讯号强度。而x(t)处于零频率的部分,则会变成频率为-ω的正弦波。同样,所有其他频率,经减少ω后,仍是非零频率。当区间(a,b)越来越长,常数的贡献会与区间长度成正比,越来越大。但是正弦波项的贡献,则仅会在零附近震荡。因此X(ω)作为在x(t)中频率值ω的相对量度将会提高。
的傅立叶转换仅会在频率为ω时产生一个非零响应。的转换于ω与-ω处皆具有响应,与式2预测的一样。
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.