在数学 和信号处理 中,解析信号 (英语:analytic signal )是没有负频率 分量的复值函数。[ 1] 解析信号的实部和虚部是由希尔伯特变换 相关联的实值函数。
实值 函数的解析表示 是解析信号 ,包含原始函数和它的希尔伯特变换。这种表示促进了许多数学变换的发展。基本的想法是,由于频谱的埃尔米特对称 ,实值函数的傅里叶变换 (或频谱 )的负频率成分是多余的。若是不介意处理复值函数的话,这些负频率分量可以丢弃而不损失信息。这使得函数的特定属性更易理解,并促进了调制和解调技术的衍生,如单边带。只要操作的函数没有负频率分量(也就是它仍是“解析函数”),从复数转换回实数就只需要丢弃虚部。解析表示是向量 概念的一个推广:[ 2] 向量限制在时不变的幅度、相位和频率,解析信号允许有时变参数。
创建一个解析信号的传递函数
若
s
(
t
)
{\displaystyle s(t)}
是一个实值 函数,其傅里叶变换为
S
(
f
)
{\displaystyle S(f)}
,
S
(
f
)
{\displaystyle S(f)}
为一于
f
=
0
{\displaystyle f=0}
埃尔米特 对称之函数:
S
(
−
f
)
=
S
(
f
)
∗
,
{\displaystyle S(-f)=S(f)^{*},}
其中,
S
(
f
)
∗
{\displaystyle S(f)^{*}}
为
S
(
f
)
{\displaystyle S(f)}
的复共轭 。
函数:
S
a
(
f
)
=
d
e
f
{
2
S
(
f
)
,
for
f
>
0
,
S
(
f
)
,
for
f
=
0
,
0
,
for
f
<
0
=
2
u
(
f
)
⏟
1
+
sgn
(
f
)
S
(
f
)
=
S
(
f
)
+
sgn
(
f
)
S
(
f
)
,
{\displaystyle {\begin{aligned}S_{\mathrm {a} }(f)&{\stackrel {\mathrm {def} }{{}={}}}{\begin{cases}2S(f),&{\text{for}}\ f>0,\\S(f),&{\text{for}}\ f=0,\\0,&{\text{for}}\ f<0\end{cases}}\\&=\underbrace {2\operatorname {u} (f)} _{1+\operatorname {sgn}(f)}S(f)=S(f)+\operatorname {sgn}(f)S(f),\end{aligned}}}
其中:
u
(
f
)
{\displaystyle \operatorname {u} (f)}
是单位阶跃函数 ,
sgn
(
f
)
{\displaystyle \operatorname {sgn}(f)}
是符号函数 ,
仅包含
S
(
f
)
{\displaystyle S(f)}
的非负频率 分量。而且由于
S
(
f
)
{\displaystyle S(f)}
的埃尔米特对称性,该运算是可逆的:
S
(
f
)
=
{
1
2
S
a
(
f
)
,
for
f
>
0
,
S
a
(
f
)
,
for
f
=
0
,
1
2
S
a
(
−
f
)
∗
,
for
f
<
0
(Hermitian symmetry)
=
1
2
[
S
a
(
f
)
+
S
a
(
−
f
)
∗
]
.
{\displaystyle {\begin{aligned}S(f)&={\begin{cases}{\frac {1}{2}}S_{\mathrm {a} }(f),&{\text{for}}\ f>0,\\S_{\mathrm {a} }(f),&{\text{for}}\ f=0,\\{\frac {1}{2}}S_{\mathrm {a} }(-f)^{*},&{\text{for}}\ f<0\ {\text{(Hermitian symmetry)}}\end{cases}}\\&={\frac {1}{2}}[S_{\mathrm {a} }(f)+S_{\mathrm {a} }(-f)^{*}].\end{aligned}}}
s
(
t
)
{\displaystyle s(t)}
的解析信号 是
S
a
(
f
)
{\displaystyle S_{\mathrm {a} }(f)}
的傅里叶逆变换:
s
a
(
t
)
=
d
e
f
F
−
1
[
S
a
(
f
)
]
=
F
−
1
[
S
(
f
)
+
sgn
(
f
)
⋅
S
(
f
)
]
=
F
−
1
{
S
(
f
)
}
⏟
s
(
t
)
+
F
−
1
{
sgn
(
f
)
}
⏟
j
1
π
t
∗
F
−
1
{
S
(
f
)
}
⏟
s
(
t
)
⏞
c
o
n
v
o
l
u
t
i
o
n
=
s
(
t
)
+
j
[
1
π
t
∗
s
(
t
)
]
⏟
H
[
s
(
t
)
]
=
s
(
t
)
+
j
s
^
(
t
)
,
{\displaystyle {\begin{aligned}s_{\mathrm {a} }(t)&{\stackrel {\mathrm {def} }{{}={}}}{\mathcal {F}}^{-1}[S_{\mathrm {a} }(f)]\\&={\mathcal {F}}^{-1}[S(f)+\operatorname {sgn}(f)\cdot S(f)]\\&=\underbrace {{\mathcal {F}}^{-1}\{S(f)\}} _{s(t)}+\overbrace {\underbrace {{\mathcal {F}}^{-1}\{\operatorname {sgn}(f)\}} _{j{\frac {1}{\pi t}}}*\underbrace {{\mathcal {F}}^{-1}\{S(f)\}} _{s(t)}} ^{convolution}\\&=s(t)+j\underbrace {\left[{1 \over \pi t}*s(t)\right]} _{\operatorname {\mathcal {H}} [s(t)]}\\&=s(t)+j{\hat {s}}(t),\end{aligned}}}
其中
s
^
(
t
)
=
d
e
f
H
[
s
(
t
)
]
{\displaystyle {\hat {s}}(t){\stackrel {\mathrm {def} }{{}={}}}\operatorname {\mathcal {H}} [s(t)]}
是
s
(
t
)
{\displaystyle s(t)}
的希尔伯特变换 ;
∗
{\displaystyle *}
是卷积 符号;
j
{\displaystyle j}
是虚数单位 。
这里我们使用欧拉公式来识别并丢弃负频率。
s
(
t
)
=
cos
(
ω
t
+
θ
)
=
1
2
(
e
j
(
ω
t
+
θ
)
+
e
−
j
(
ω
t
+
θ
)
)
{\displaystyle s(t)=\cos(\omega t+\theta )={\tfrac {1}{2}}(e^{j(\omega t+\theta )}+e^{-j(\omega t+\theta )})}
于是:
s
a
(
t
)
=
{
e
j
(
ω
t
+
θ
)
=
e
j
|
ω
|
t
⋅
e
j
θ
,
if
ω
>
0
,
e
−
j
(
ω
t
+
θ
)
=
e
j
|
ω
|
t
⋅
e
−
j
θ
,
if
ω
<
0.
{\displaystyle s_{\mathrm {a} }(t)={\begin{cases}e^{j(\omega t+\theta )}\ \ =\ e^{j|\omega |t}\cdot e^{j\theta },&{\text{if}}\ \omega >0,\\e^{-j(\omega t+\theta )}=\ e^{j|\omega |t}\cdot e^{-j\theta },&{\text{if}}\ \omega <0.\end{cases}}}
一个函数(蓝色)和它的解析表示的模(红),显示出包络现象。
解析信号也可以表示在其随时间变化的幅度和相位(极坐标 ):
s
a
(
t
)
=
s
m
(
t
)
e
j
ϕ
(
t
)
,
{\displaystyle s_{\mathrm {a} }(t)=s_{\mathrm {m} }(t)e^{j\phi (t)},}
其中:
s
m
(
t
)
=
d
e
f
|
s
a
(
t
)
|
{\displaystyle s_{\mathrm {m} }(t){\stackrel {\mathrm {def} }{{}={}}}|s_{\mathrm {a} }(t)|}
称作瞬时幅度 或包络 ;
ϕ
(
t
)
=
d
e
f
arg
[
s
a
(
t
)
]
{\displaystyle \phi (t){\stackrel {\mathrm {def} }{{}={}}}\arg \!\left[s_{\mathrm {a} }(t)\right]}
称作瞬时相位 。
在附图中,蓝色曲线描绘
s
(
t
)
{\displaystyle s(t)}
,红色曲线描绘对应的
s
m
(
t
)
{\displaystyle s_{\mathrm {m} }(t)}
。
解缠的 瞬时相位的时间导数的单位为rad/s,称作瞬时角频率 :
ω
(
t
)
=
d
e
f
d
ϕ
d
t
(
t
)
.
{\displaystyle \omega (t){\stackrel {\mathrm {def} }{{}={}}}{\frac {d\phi }{dt}}(t).}
因此,瞬时频率 (单位赫兹 )为:
f
(
t
)
=
d
e
f
1
2
π
ω
(
t
)
.
{\displaystyle f(t){\stackrel {\mathrm {def} }{{}={}}}{\frac {1}{2\pi }}\omega (t).}
[ 3]
瞬时幅度、瞬时相位与频率在一些应用中用于测量和检测的信号的局部特征。信号的解析表示的另一个应用与调制信号 的解调有关。极坐标方便将幅度调制 和相位(或频率)调制的影响分开,对解调某些种类的信号很有效。
"the complex envelope (or complex amplitude)"[ 6]
"the complex envelope (or complex amplitude)", p.586 [ 7]
"Complex envelope is an extended interpretation of complex amplitude as a function of time." p.85[ 8]
Bracewell, Ron. The Fourier Transform and Its Applications . McGraw-Hill, 1965. p269
B. Boashash, "Estimating and Interpreting the Instantaneous Frequency of a Signal-Part I: Fundamentals", Proceedings of the IEEE, Vol. 80, No. 4, pp. 519-538, April 1992
B. Boashash, “Notes on the use of the Wigner distribution for time frequency signal analysis”, IEEE Trans. on Acoustics, Speech, and Signal Processing , vol. 26, no. 9, 1987
Leon Cohen, Time-frequency analysis , Prentice Hall, Upper Saddle River, 1995.
Frederick W. King, Hilbert Transforms , vol. II, Cambridge University Press, Cambridge, 2009.
B. Boashash, Time-Frequency Signal Analysis and Processing: A Comprehensive Reference , Elsevier Science, Oxford, 2003.