碳捕集与利用(Carbon capture and utilization,简称CCU)和CCS有时被统称为“碳捕获、利用和截存”(carbon capture, utilization, and sequestration,简称CCUS)。因为CCS是种成本相对昂贵的工艺,其生产出来的东西往往又过于便宜,[9]这使得在碳定价足够高的地方(例如在欧洲大部分地区)进行碳捕集才具有经济上的意义,[5]或者是加以利用,让廉价的二氧化碳能用于生产高价值的化学品,以抵消捕集作业所花费的成本。[10]
二氧化碳可储存在深层地质结构中,或是转化为矿物碳酸盐的形式后再储存。有种热裂解碳捕集和储存(英语:Pyrogenic carbon capture and storage)(简称PyCCS,参见#Technology部分)工艺也在研究之中。[11]深层地质结构目前被认为是最具前景的封存地点。美国国家能源技术实验室(NETL)称,按照目前的生产速度,在北美洲可供储存二氧化碳的地点足以应付900多年的产量。[12]而对这种储存技术,普遍会产生的问题是这类在海底或是地下储存的做法,其长期安全性难以预测,而且有不确定性,因为仍存在一些二氧化碳会泄漏的风险。[13][14][15]尽管如此,最近发布的报导及研究报告估计大量泄漏的风险相对不高,且基于缓解气候变化的理由,CCS仍值得进行。[16][17][何时?]
所谓碳捕集与封存这一用语,也称为二氧化碳捕集与封存(carbon dioxide capture and storage),后者是国际标准化组织(ISO)所推荐的用法,(参见ISO 27917,[18])因为它更准确:目标是捕集二氧化碳,而非捕集碳。此用语的定义是:"将相关工业和能源来源产生相对纯净的二氧化碳 (CO2) 流分离(捕集)、调整、压缩,并运送到适当地点储存,以长期与大气隔离的过程。"[2](p. 2221)CCS的用语及概念与生物能源与碳捕获和储存(简称BECCS)、碳截存(Carbon sequestration)和二氧化碳移除(也称为负排放)有关联。
无法开采的煤层可作为储存二氧化碳之用,二氧化碳分子会附着在煤碳表面。如此做的技术可行性取决于煤层的渗透性。在吸收过程中,煤碳会释放出先前吸收的甲烷,因此可采收甲烷(提高煤层甲烷回收率法(英语:Enhanced coal bed methane recovery))。甲烷收入可抵消一部分作业成本,但甲烷是种强大的温室气体,在采收的过程中要避免其泄漏进入大气。[58]
有项透过国际机构支持CCS的方案 - 通过《京都议定书》的清洁发展机制。在2010年联合国气候变化大会(COP16)过程中,附属科学技术咨询机构(Subsidiary Body for Scientific and Technological Advice)第三十三届会议发布一份文件草案,建议将CCS纳入清洁发展机制项目活动的地质构造章节中。[92]之后在南非德班举行的2011年联合国气候变化大会(COP17)时达成最终协议,CCS纳入清洁发展机制,因而得到支持。[93]
能源经济与金融分析研究所(Institute for Energy Economics & Financial Analysis)[96]批评一些公司并未报告使用其产品过程中会产生的温室气体排放量。[5](p. 33)天然气加工中产生的二氧化碳通常在捕集后,用于提高原油/天然气采收率(EOR)。[5]有人建议在提高采收率时只能使用使用人为二氧化碳,并且只在能产生负排放的情况下才能获得财政激励(例如税收抵免),这类财政激励通常只会发生在项目的最初几年。[97]
燃气和燃煤发电厂
全球依赖燃烧化石燃料的发电厂所排放的二氧化碳总量非常巨大,燃煤发电厂烟气中通常含有10-14%的二氧化碳,而燃气发电厂的则含有4-5%的二氧化碳。[5](p. 37)每吨二氧化碳的成本会因容量因子降低而随之增加(例如尖峰负载发电厂或紧急发电系统(英语:emergency power system)使用的机会通常较常规的电厂为少)。[5](p. 42)
对于超临界高压蒸气燃煤(PC)发电厂,CCS的能源需求范围为24%至40%,而对于整体煤气化联合循环(IGCC)系统则为14%至25%。[98]开采煤炭所带来的燃料使用和环境问题也随之增加。配备用于控制二氧化硫的烟气脱硫 (FGD) 系统的工厂需要使用更多的石灰石,而针对燃烧过程中产生氮氧化物的选择性催化还原法的系统则需要使用更多的氨。截至2022年,位于加拿大的边界大坝发电厂(英语:Boundary Dam Power Station)是世界唯一采用燃烧后捕集二氧化碳设施的燃煤发电厂。[5](p. 42)
Abdulla, Ahmed; Hanna, Ryan; Schell, Kristen R.; Babacan, Oytun; et al. Explaining successful and failed investments in U.S. carbon capture and storage using empirical and expert assessments. Environmental Research Letters. 2020-12-29, 16 (1): 014036. Bibcode:2021ERL....16a4036A. doi:10.1088/1748-9326/abd19e.
Werner, C; Schmidt, H-P; Gerten, D; Lucht, W; Kammann, C. Biogeochemical potential of biomass pyrolysis systems for limiting global warming to 1.5 °C. Environmental Research Letters. 2018-04-01, 13 (4): 044036. Bibcode:2018ERL....13d4036W. doi:10.1088/1748-9326/aabb0e.
Phelps, Jack J.C.; Blackford, Jerry C.; Holt, Jason T.; Polton, Jeff A. Modelling large-scale CO2 leakages in the North Sea. International Journal of Greenhouse Gas Control. 2015-07, 38: 210–220. doi:10.1016/j.ijggc.2014.10.013.
Vinca, Adriano; Emmerling, Johannes; Tavoni, Massimo. Bearing the Cost of Stored Carbon Leakage. Frontiers in Energy Research. 2018, 6. doi:10.3389/fenrg.2018.00040.
Cuéllar-Franca, Rosa M.; Azapagic, Adisa. Carbon capture, storage and utilisation technologies: A critical analysis and comparison of their life cycle environmental impacts. Journal of CO2 Utilization. 2015-03, 9: 82–102. doi:10.1016/j.jcou.2014.12.001.
De Ras, Kevin; Van de Vijver, Ruben; Galvita, Vladimir V; Marin, Guy B; Van Geem, Kevin M. Carbon capture and utilization in the steel industry: challenges and opportunities for chemical engineering. Current Opinion in Chemical Engineering. 2019-12-01, 26: 81–87. S2CID 210619173. doi:10.1016/j.coche.2019.09.001.
Sumida, Kenji; Rogow, David L.; Mason, Jarad A.; McDonald, Thomas M.; Bloch, Eric D.; Herm, Zoey R.; Bae, Tae-Hyun; Long, Jeffrey R. CO2 Capture in Metal–Organic Frameworks. Chemical Reviews. 2011-12-28, 112 (2): 724–781. PMID 22204561. doi:10.1021/cr2003272.
Bryngelsson, Mårten; Westermark, Mats. CO2 capture pilot test at a pressurized coal fired CHP plant. Energy Procedia. 2009, 1: 1403–10. doi:10.1016/j.egypro.2009.01.184.
Jensen, Mark J.; Russell, Christopher S.; Bergeson, David; Hoeger, Christopher D.; Frankman, David J.; Bence, Christopher S.; Baxter, Larry L. Prediction and validation of external cooling loop cryogenic carbon capture (CCC-ECL) for full-scale coal-fired power plant retrofit. International Journal of Greenhouse Gas Control. 2015-11, 42: 200–212. doi:10.1016/j.ijggc.2015.04.009(英语).
Kulkarni, Ambarish R.; Sholl, David S. Analysis of Equilibrium-Based TSA Processes for Direct Capture of CO2 from Air. Industrial & Engineering Chemistry Research. 2012-06-18, 51 (25): 8631–8645. doi:10.1021/ie300691c.
(Eric) van Dijk, H. A. J.; Cobden, Paul D.; Lukashuk, Liliana; de Water, Leon van; Lundqvist, Magnus; Manzolini, Giampaolo; Cormos, Calin-Cristian; van Dijk, Camiel; Mancuso, Luca; Johns, Jeremy; Bellqvist, David. STEPWISE Project: Sorption-Enhanced Water-Gas Shift Technology to Reduce Carbon Footprint in the Iron and Steel Industry. Johnson Matthey Technology Review. 2018-10-01, 62 (4): 395–402. S2CID 139928989. doi:10.1595/205651318X15268923666410. hdl:11311/1079169.
CO2 Capture, transport and storage(PDF). Postnote (Parliamentary Office of Science and Technology). 2009-06, 335 [2019-08-10]. Since 2008 Norway's Statoil has been transporting CO2 (obtained from natural gas extraction) through a 160 km seabed pipeline
Simeski, Filip; Ihme, Matthias. Corrosive Influence of Carbon Dioxide on Crack Initiation in Quartz: Comparison with Liquid Water and Vacuum Environments. Journal of Geophysical Research: Solid Earth. 2023-01-13, 128 (1). Bibcode:2023JGRB..12825624S. S2CID 255922362. doi:10.1029/2022JB025624.
Viebahn, Peter; Nitsch, Joachim; Fischedick, Manfred; Esken, Andrea; Schüwer, Dietmar; Supersberger, Nikolaus; Zuberbühler, Ulrich; Edenhofer, Ottmar. Comparison of carbon capture and storage with renewable energy technologies regarding structural, economic, and ecological aspects in Germany. International Journal of Greenhouse Gas Control. 2007-04, 1 (1): 121–133. doi:10.1016/S1750-5836(07)00024-2.
Holloway, S., A. Karimjee, M. Akai, R. Pipatti, and K. Rypdal, 2006–2011. CO2 Transport, Injection and Geological Storage, in Eggleston H.S., Buendia L., Miwa K., Ngara T., and Tanabe K. (Eds.), IPCC Guidelines for National Greenhouse Gas Inventories, IPCC National Greenhouse Gas Inventories Programme, WMO/UNEP
Miles, Natasha L.; Davis, Kenneth J.; Wyngaard, John C. Detecting Leaks from Belowground CO2 Reservoirs Using Eddy Covariance. CO2 Capture for Storage in Deep Geologic Formations. Elsevier Science. 2005: 1031–1044. ISBN 978-0-08-044570-0. doi:10.1016/B978-008044570-0/50149-5.
Thorbjörnsson, Anders; Wachtmeister, Henrik; Wang, Jianliang; Höök, Mikael. Carbon capture and coal consumption: Implications of energy penalties and large scale deployment. Energy Strategy Reviews. 2015-04, 7: 18–28. doi:10.1016/j.esr.2014.12.001.
Rubin, Edward S.; Mantripragada, Hari; Marks, Aaron; Versteeg, Peter; Kitchin, John. The outlook for improved carbon capture technology. Progress in Energy and Combustion Science. 2012-10, 38 (5): 630–671. doi:10.1016/j.pecs.2012.03.003.
[IPCC, 2005] IPCC special report on CO2 Capture and Storage. Prepared by working group III of the Intergovernmental Panel on Climate Change. Metz, B., O. Davidson, H. C. de Coninck, M. Loos, and L.A. Meyer (eds.). Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 442 pp. Available in full at www.ipcc.ch互联网档案馆的存档,存档日期2010-02-10. (PDF - 22.8MB)
Smit, Berend; Reimer, Jeffery A.; Oldenburg, Curtis M.; Bourg, Ian C. Introduction to Carbon Capture and Sequestration The Berkeley Lectures on Energy - Vol. 1. Imperial College Press.
Trautz, Robert C.; Pugh, John D.; Varadharajan, Charuleka; Zheng, Liange; Bianchi, Marco; Nico, Peter S.; Spycher, Nicolas F.; Newell, Dennis L.; Esposito, Richard A.; Wu, Yuxin; Dafflon, Baptiste; Hubbard, Susan S.; Birkholzer, Jens T. Effect of Dissolved CO2 on a Shallow Groundwater System: A Controlled Release Field Experiment. Environmental Science & Technology. 2012-09-20, 47 (1): 298–305. PMID 22950750. S2CID 7382685. doi:10.1021/es301280t.
L׳Orange Seigo, Selma; Dohle, Simone; Siegrist, Michael. Public perception of carbon capture and storage (CCS): A review. Renewable and Sustainable Energy Reviews. 2014-10, 38: 848–863. doi:10.1016/j.rser.2014.07.017.
Poumadère, Marc; Bertoldo, Raquel; Samadi, Jaleh. Public perceptions and governance of controversial technologies to tackle climate change: nuclear power, carbon capture and storage, wind, and geoengineering: Public perceptions and governance of controversial technologies to tackle CC. Wiley Interdisciplinary Reviews: Climate Change. 2011-09, 2 (5): 712–727. doi:10.1002/wcc.134.
Anderson, Carmel; Schirmer, Jacki; Abjorensen, Norman. Exploring CCS community acceptance and public participation from a human and social capital perspective. Mitigation and Adaptation Strategies for Global Change. 2012-08, 17 (6): 687–706. S2CID 153912327. doi:10.1007/s11027-011-9312-z.
L'Orange Seigo, Selma; Wallquist, Lasse; Dohle, Simone; Siegrist, Michael. Communication of CCS monitoring activities may not have a reassuring effect on the public. International Journal of Greenhouse Gas Control. 2011-11, 5 (6): 1674–1679. doi:10.1016/j.ijggc.2011.05.040.
Anderson, Jason; Chiavari, Joana. Understanding and improving NGO position on CCS. Energy Procedia. 2009-02, 1 (1): 4811–4817. doi:10.1016/j.egypro.2009.02.308.
Carton, Wim; Asiyanbi, Adeniyi; Beck, Silke; Buck, Holly J.; Lund, Jens F. Negative emissions and the long history of carbon removal. WIREs Climate Change. 2020-11, 11 (6). doi:10.1002/wcc.671.
Røttereng, Jo-Kristian S. When climate policy meets foreign policy: Pioneering and national interest in Norway's mitigation strategy. Energy Research & Social Science. 2018-05, 39: 216–225. doi:10.1016/j.erss.2017.11.024.
Cuéllar-Franca, Rosa M.; Azapagic, Adisa. Carbon capture, storage and utilisation technologies: A critical analysis and comparison of their life cycle environmental impacts. Journal of CO2 Utilization. 2015-03, 9: 82–102. doi:10.1016/j.jcou.2014.12.001.
Keith, David W.; Holmes, Geoffrey; St. Angelo, David; Heide, Kenton. A Process for Capturing CO2 from the Atmosphere. Joule. 2018-06-07, 2 (8): 1573–1594. doi:10.1016/j.joule.2018.05.006.
Beuttler, Christoph; Charles, Louise; Wurzbacher, Jan. The Role of Direct Air Capture in Mitigation of Anthropogenic Greenhouse Gas Emissions. Frontiers in Climate. 2019-11-21, 1: 10. doi:10.3389/fclim.2019.00010.