Loading AI tools
来自维基百科,自由的百科全书
数学上,平方数,或称完全平方数,是指可以写成某个整数的平方的数,即其平方根为整数的数。例如,9 = 3 × 3,它是一个平方数。
此条目需要补充更多来源。 (2019年4月21日) |
平方数也称正方形数,若 n 为平方数,将 n 个点排成矩形,可以排成一个正方形。
若将平方数概念扩展到有理数,则两个平方数的比仍然是平方数,例如, (2 × 2) / (3 × 3) = 4/9 = 2/3 × 2/3。
若一个整数没有除了 1 之外的平方数为其因数,则称其为无平方数因数的数。
前n个平方数
一个整数是完全平方数当且仅当相同数目的点能够在平面上排成一个正方形的点阵,使得每行每列的点都一样多。
12 = 1 | |
22 = 4 | |
32 = 9 | |
42 = 16 | |
52 = 25 |
对于一个整数 n,它的平方写成 n2。n2等于头 n 个正奇数的和()。在上图中,从1开始,第 n 个平方数表示为前一个平方数加上第 n 个正奇数,如 52 = 25 = 1 + 3 + 5 + 7 + 9 = 16 + 9。即第五个平方数25等于第四个平方数16加上第五个正奇数:9。
每个平方数可以从之前的两个平方数计算得到,递推公式为 。例如,2×52 − 42 + 2 = 2×25 − 16 + 2 = 50 − 16 + 2 = 36 = 62。
平方数还可以表示成 n2 = 1 + 1 + 2 + 2 + ... + n − 1 + n − 1 + n。例如,42 = 16 = 1 + 1 + 2 + 2 + 3 + 3 + 4。可以将其解释为在边长为 3 的矩形上添加宽度为 1 的一行和一列,即得到边长为 4 的矩形。这对于计算较大的数的平方数非常有用。例如, 522 = 502 + 50 + 51 + 51 + 52 = 2500 + 204 = 2704.
至于为什么祇能以00、25结尾,可以将该数字除以100。可以发现,n.5若写成分数形式,则为(2n+1)/2。设2n+1=p,则p与n互质。根据完全平方公式可得,( 2n/2 + 1/2 )^2=n^2 + 1 + 0.25。由于前面均为整数,所以最终结果小数部分必为.25。乘以100后,则最后两位必为25。
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.