Loading AI tools
數學組由場擴展的自同構組成 来自维基百科,自由的百科全书
伽罗瓦群(法语:Groupe de Galois)是抽象代数中域论的概念,表示与某个类型的域扩张相伴的群,是伽罗瓦理论的基础概念。域扩张源于多项式。通过伽罗瓦群研究域扩张以及多项式的理论,称为伽罗瓦理论,是十九世纪法国数学家埃瓦里斯特·伽罗瓦为了解决“高次多项式方程是否有根式解”的问题而创造的。后世也以他的名字命名相关的概念。
设有域扩张L/K。考虑所有L上的K-自同构集合。此处的K-自同构指的是L映射到L的域同构,且其限制在K上的部分是平凡的(即为恒等映射)。用数学语言描述,一个K-自同构是指满足以下条件的同态σ[1]:15-16[2]:125:
可以证明,对任意的域扩张L/K,所有L上的K-自同构关于映射的复合运算构成群,称为域扩张L/K的自同构群,记作Aut(L/K)[1]:16。
如果L/K是一个伽罗瓦扩张,则Aut(L/K)称为扩张L/K上的伽罗瓦群,通常记做 Gal(L/K)(有些文献中记作Gal(L : K))[1]:16。
在某些介绍伽罗瓦理论的专著中,也会将任何域扩张上的自同构群都称为伽罗瓦群,并记作Gal(L/K)σ[2]:125。
设F是一个域,分别为有理数、实数与复数域。F(a)表示在F中添加元素a生成的域扩张。
设有域扩张L/K,则其自同构群Aut(L/K)满足:
设域扩张L/K为伽罗瓦扩张。以下的性质均可以在没有伽罗瓦理论基本定理的情况下证明。
伽罗瓦扩张的重要性在于,有限的伽罗瓦扩张满足伽罗瓦理论基本定理:伽罗瓦群的子群与域扩张的中间域之间存在着反向包含的一一对应关系。
如果Gal(L/K)是伽罗瓦扩张,则伽罗瓦群Gal(L/K)上可以装备一个拓扑,称为克鲁尔拓扑,使其成为一个投射有限群。在此拓扑下,即便Gal(L/K)是无限扩张,其伽罗瓦群的闭子群与域扩张的中间域存在着反向包含的一一对应关系,有类似伽罗瓦理论基本定理的结论。
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.