相對論粒子
来自维基百科,自由的百科全书
在粒子物理中,相對論粒子指的是動能超過靜質量能或者與之匹敵的基本粒子。由於靜質能量滿足愛因斯坦的質能方程,故也可以說當粒子速度接近光速時,即可被稱為相對論粒子。[1]常見的相對論粒子如光子,其狹義相對論的效應可以由狄拉克方程描述。[2]
根據狹義相對論,一般粒子的能量-動能關係可以描述為 [3]:
|
其中 為能量, 為動量, 而 為粒子的靜質量。當靜質量趨近於零時(如光子),或動量足夠大時(如經由加速器加速的質子),此關係坍縮為線性,即:
|
這種線性關係與經典粒子中拋物線形狀的能量-動量關係具有顯著區別。因此,在粒子物理實踐中,線性或者至少是非拋物線性的能量-動量色散關係,被認為是相對論粒子的基本特性,並因其上述成因被分為無質量(massless)和具質量(massive)相對論粒子。
在實驗中,具質量相對論粒子的成因是因為其動能接近或超過靜質能量。當具質量粒子的總質能為靜質能量的至少兩倍時,即常被實驗學家視為具有相對論性。根據洛倫茲因子公式,此時,其實際速度應不低於光速的85%。這樣的粒子常可在粒子加速器[a] 或者宇宙射線中產生。[b] 在天體物理的研究中, 人們還發現活動星系和類星體的中心會生成相對論性等離子體的噴流[4] 另外,利用穿越輻射探測器觀測高速粒子時,科研人員還發現,當帶電相對論粒子穿過具有不同介電常數的兩個媒體的界面時即會產生的穿越輻射。[5]
桌面相對論粒子

相對論電子也可存在於固體材料中,[6][7] 包括石墨烯[6]、拓撲絕緣體[8]、鉍銻合金[9]等半金屬材料, 和過渡金屬二鹵化物[10] 、黑磷單層[11] 等半導體材料。這些材料中的晶格電子的量子效應和相對論效應均可以用狄拉克方程描述,因此被稱為桌面相對論電子或者桌面狄拉克電子。唐爽和崔瑟豪斯夫人通過進一步研究,提出了「唐-崔瑟豪斯理論」。該理論提出了在固體材料中構建各向異性的桌面相對論粒子的系統性方法。[12][13][14]
相關內容
備註
參考文獻
Wikiwand - on
Seamless Wikipedia browsing. On steroids.