數學物理學中,空間群(space group)是空間中(通常是三維空間)一種形態的空間對稱群。在三維空間中有219種不同的類型,或230種不同的手性類型。對超過三維的空間中的空間群也有研究,它們有時被稱作比貝爾巴赫英語Ludwig Bieberbach,並且是離散的緊,具有歐氏空間的等距同構。它是由俄國結晶學家費多洛夫和德國結晶學家薛弗利斯(Artur Moritz Schoenflies,1853-1928)於1890至1891年間各自獨立地先後推導得出來的。

晶體學中,空間群也被稱為費奧多羅夫英語Evgraf Fedorov,是對晶體對稱型的一種描述。三維空間群的權威參考文獻是《國際晶體學表》。空間群可以分為兩類:一類稱為簡單空間群或稱點空間群;一類稱為複雜空間群或稱非點空間群。其中73種為簡單空間群,餘下的157種為複雜空間群。

三維的空間群

更多資訊 #, 晶系(空間群數量) 布拉維晶格 ...
# 晶系
(空間群數量)
布拉維晶格
點群 空間群 (國際短符號)
國際標記法 熊夫利標記法英語Schoenflies notation[1] 軌形英語Orbifold 考克斯特符號英語Coxeter notation 點群階
1 三斜晶系
(2)
1 C1 11 [ ]+ 1 P1
2 1 Ci [2+,2+] 2 P1
3–5 單斜晶系
(13)
2 C2 22 [2]+ 2 P2, P21
C2
6–9 m Cs *11 [ ] 2 Pm, Pc
Cm, Cc
10–15 2/m C2h 2* [2,2+] 4 P2/m, P21/m
C2/m, P2/c, P21/c
C2/c
16–24 正交晶系
(59)

222 D2 222 [2,2]+ 4 P222, P2221, P21212, P212121, C2221, C222, F222, I222, I212121
25–46 mm2 C2v *22 [2] 4 Pmm2, Pmc21, Pcc2, Pma2, Pca21, Pnc2, Pmn21, Pba2, Pna21, Pnn2
Cmm2, Cmc21, Ccc2, Amm2, Aem2, Ama2, Aea2
Fmm2, Fdd2
Imm2, Iba2, Ima2
47–74 mmm D2h *222 [2,2] 8 Pmmm, Pnnn, Pccm, Pban, Pmma, Pnna, Pmna, Pcca, Pbam, Pccn, Pbcm, Pnnm, Pmmn, Pbcn, Pbca, Pnma
Cmcm, Cmce, Cmmm, Cccm, Cmme, Ccce
Fmmm, Fddd
Immm, Ibam, Ibca, Imma
75–80 四方晶系
(68)

4 C4 44 [4]+ 4 P4, P41, P42, P43, I4, I41
81–82 4 S4 [2+,4+] 4 P4, I4
83–88 4/m C4h 4* [2,4+] 8 P4/m, P42/m, P4/n, P42/n
I4/m, I41/a
89–98 422 D4 224 [2,4]+ 8 P422, P4212, P4122, P41212, P4222, P42212, P4322, P43212
I422, I4122
99–110 4mm C4v *44 [4] 8 P4mm, P4bm, P42cm, P42nm, P4cc, P4nc, P42mc, P42bc
I4mm, I4cm, I41md, I41cd
111–122 42m D2d 2*2 [2+,4] 8 P42m, P42c, P421m, P421c, P4m2, P4c2, P4b2, P4n2
I4m2, I4c2, I42m, I42d
123–142 4/mmm D4h *224 [2,4] 16 P4/mmm, P4/mcc, P4/nbm, P4/nnc, P4/mbm, P4/mnc, P4/nmm, P4/ncc, P42/mmc, P42/mcm, P42/nbc, P42/nnm, P42/mbc, P42/mnm, P42/nmc, P42/ncm
I4/mmm, I4/mcm, I41/amd, I41/acd
143–146 三方晶系
(25)
3 C3 33 [3]+ 3 P3, P31, P32
R3
147–148 3 S6 [2+,6+] 6 P3, R3
149–155 32 D3 223 [2,3]+ 6 P312, P321, P3112, P3121, P3212, P3221
R32
156–161 3m C3v *33 [3] 6 P3m1, P31m, P3c1, P31c
R3m, R3c
162–167 3m D3d 2*3 [2+,6] 12 P31m, P31c, P3m1, P3c1
R3m, R3c
168–173 六方晶系
(27)
6 C6 66 [6]+ 6 P6, P61, P65, P62, P64, P63
174 6 C3h 3* [2,3+] 6 P6
175–176 6/m C6h 6* [2,6+] 12 P6/m, P63/m
177–182 622 D6 226 [2,6]+ 12 P622, P6122, P6522, P6222, P6422, P6322
183–186 6mm C6v *66 [6] 12 P6mm, P6cc, P63cm, P63mc
187–190 6m2 D3h *223 [2,3] 12 P6m2, P6c2, P62m, P62c
191–194 6/mmm D6h *226 [2,6] 24 P6/mmm, P6/mcc, P63/mcm, P63/mmc
195–199 立方晶系
(36)


23 T 332 [3,3]+ 12 P23, F23, I23
P213, I213
200–206 m3 Th 3*2 [3+,4] 24 Pm3, Pn3, Fm3, Fd3, Im3, Pa3, Ia3
207–214 432 O 432 [3,4]+ 24 P432, P4232
F432, F4132
I432
P4332, P4132, I4132
215–220 43m Td *332 [3,3] 24 P43m, F43m, I43m
P43n, F43c, I43d
221–230 m3m Oh *432 [3,4] 48 Pm3m, Pn3n, Pm3n, Pn3m
Fm3m, Fm3c, Fd3m, Fd3c
Im3m, Ia3d
關閉

注: e 面是雙滑移面,是在兩個不同方向的滑移,存在於七個正交群,五個四方群和五個立方群中,都具有含有中心的晶格,官方的符號為e

參考資料

  • Barlow, W, Über die geometrischen Eigenschaften starrer Strukturen und ihre Anwendung auf Kristalle, Z. Kristallogr., 1894, 23: 1–63
  • Bieberbach, Ludwig, Über die Bewegungsgruppen der Euklidischen Räume, Mathematische Annalen, 1911, 70 (3): 297–336, ISSN 0025-5831, doi:10.1007/BF01564500
  • Bieberbach, Ludwig, Über die Bewegungsgruppen der Euklidischen Räume (Zweite Abhandlung.) Die Gruppen mit einem endlichen Fundamentalbereich, Mathematische Annalen, 1912, 72 (3): 400–412, ISSN 0025-5831, doi:10.1007/BF01456724
  • Brown, Harold; Bülow, Rolf; Neubüser, Joachim; Wondratschek, Hans; Zassenhaus, Hans, Crystallographic groups of four-dimensional space, New York: Wiley-Interscience [John Wiley & Sons], 1978, ISBN 978-0-471-03095-9, MR0484179
  • Burckhardt, Johann Jakob, Die Bewegungsgruppen der Kristallographie, Lehrbücher und Monographien aus dem Gebiete der exakten Wissenschaften 13, Verlag Birkhäuser, Basel, 1947, MR0020553
  • Burckhardt, Johann Jakob, Zur Geschichte der Entdeckung der 230 Raumgruppen, Archive for History of Exact Sciences, 1967, 4 (3): 235–246, ISSN 0003-9519, doi:10.1007/BF00412962, MR0220837

外部連結

Wikiwand in your browser!

Seamless Wikipedia browsing. On steroids.

Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.

Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.