龐特里亞金最大化原理(Pontryagin's maximum principle)也根據使用條件稱為龐特里亞金最小化原理最大值原理最小值原理,是最優控制中的理論,是在狀態或是輸入控制項有限制條件的情形下,可以找到將動力系統由一個狀態到另一個狀態的最優控制信號。此理論是蘇俄數學家列夫·龐特里亞金及他的學生在1956年提出的[1]。這是變分法歐拉-拉格朗日方程的特例。

簡單來說,此定理是指在所有可能的控制中,需讓「控制哈密頓量」(control Hamiltonian)取極值,極值是最大值或是最小值則依問題以及哈密頓量的符號定義而不同。正式的用法,也就是哈密頓量中所使用的符號,會取到最大值,但是此條目中使用的符號定義方式,會讓極值取到最小值。

是所有可能控制值的集合,則此原理指出,最優控制必須滿足以下條件:

其中是最佳狀態軌跡,而是最佳 協態軌跡[2]

此結果最早成功的應用在輸入控制有限制條件的最小時間問題中,不過也可以用在狀態有限制條件的問題中。

也可以推導控制哈密頓量的特殊條件。若最終時間固定,且控制哈密頓量不是時間的顯函數,則:

若最終時間沒有限制,則:

若在某一軌跡上滿足龐特里亞金最大化原理,此原理是最佳解的必要條件哈密頓-雅可比-貝爾曼方程 提供了最佳解的充份必要條件,但該條件須在整個狀態空間中都要成立。

最大化和最小化

此定理一開始的名稱是龐特里亞金最大化原理(Pontryagin's maximum principle),其證明也是以控制哈密頓量最大化為基礎。此原理最早的應用是要最大化火箭的終端速度。不過後來此定理大部份的應用是使性能指標最小化,因此常稱為龐特里亞金最小化原理。龐特里亞金的書解出了要讓性能指標最小化的問題[3]

符號

以下的內容會使用這些表示方式

最小化問題必要條件的正式敘述

以下是讓泛函最小化的必要條件。令為在輸入為時,動態系統的狀態,且滿足以下條件

其中

為可行控制的集合
為系統的結束時間。

控制需在所有內使目標泛函最小化,目標泛函隨應用而定,可以寫成

系統動態的限制可以用導入時變拉格朗日乘數向量的方式和相加,而拉格朗日乘數向量的元素稱為系統的協態(costate)。因此可以建構在所有 哈密頓量為:

其中的轉置。

龐特里亞金最小化原理提到最佳狀態軌跡,最佳控制及對應的拉格朗日乘數向量必需最小化哈密頓量,因此

針對所有時間,也針對所有可能的控制輸入。以下的式子也必須成立

而且也要滿足以下的協態方程

若最終狀態沒有固定(其微分變異不為0),最終協態也要滿足以下條件

上述(1)-(4)的條件是最佳控制的必要條件。公式(4)只有在沒有固定時才需要成立。若是固定值,公式(4)不在必要條件中。

此解法可以應用在宇宙學和天體物理學中 [4]

相關條目

腳註

參考資料

外部連結

Wikiwand in your browser!

Seamless Wikipedia browsing. On steroids.

Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.

Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.