Z
[
i
]
{\displaystyle \mathbf {Z} [i]}
的質元素 又稱為高斯質數 。
高斯整數
a
+
b
i
{\displaystyle a+bi}
是質數當且僅當 :
a
,
b
{\displaystyle a,b}
中有一個是零,另一個是形為
4
n
+
3
{\displaystyle 4n+3}
或其相反數
−
(
4
n
+
3
)
{\displaystyle -(4n+3)}
的質數
或
a
,
b
{\displaystyle a,b}
均不為零,而
a
2
+
b
2
{\displaystyle a^{2}+b^{2}}
為質數。
高斯質數的分佈
以下給出這些條件的證明。
必要條件 的證明為:僅當高斯整數的範數是質數,或質數的平方時,它才是高斯質數。這是因為對於任何高斯整數
g
{\displaystyle g}
,
g
∣
g
g
¯
=
N
(
g
)
{\displaystyle g\mid g{\overline {g}}=N(g)}
。現在,
N
(
g
)
{\displaystyle N(g)}
是整數,因此根據算術基本定理 ,它可以分解為質數
p
1
p
2
⋯
p
n
{\displaystyle p_{1}p_{2}\cdots p_{n}}
的乘積。根據質數的定義,如果
g
{\displaystyle g}
是質數,則它可以整除
p
i
{\displaystyle p_{i}}
,對於某個
i
{\displaystyle i}
。另外,
g
¯
{\displaystyle {\overline {g}}}
可以整除
p
i
¯
=
p
i
{\displaystyle {\overline {p_{i}}}=p_{i}}
,因此
N
(
g
)
=
g
g
¯
∣
p
i
2
{\displaystyle N(g)=g{\overline {g}}\mid p_{i}^{2}}
。於是現在只有兩種選擇:要麼
g
{\displaystyle g}
的範數是質數,要麼是質數的平方。
如果實際上對於某個質數
p
{\displaystyle p}
,有
N
(
g
)
=
p
2
{\displaystyle N(g)=p^{2}}
,那麼
g
{\displaystyle g}
和
g
¯
{\displaystyle {\overline {g}}}
都能整除
p
2
{\displaystyle p^{2}}
。它們都不能是可逆元素,因此
g
=
p
u
{\displaystyle g=pu}
,以及
g
¯
=
p
u
¯
{\displaystyle {\overline {g}}=p{\overline {u}}}
,其中
u
{\displaystyle u}
是可逆元素。這就是說,要麼
a
=
0
{\displaystyle a=0}
,要麼
b
=
0
{\displaystyle b=0}
,其中
g
=
a
+
b
i
{\displaystyle g=a+bi}
。
然而,不是每一個質數
p
{\displaystyle p}
都是高斯質數。
2
{\displaystyle 2}
就不是高斯質數,因為
2
=
(
1
+
i
)
(
1
−
i
)
{\displaystyle 2=(1+i)(1-i)}
。高斯質數不能是
4
n
+
1
{\displaystyle 4n+1}
的形式,因為根據費馬平方和定理 ,它們可以寫成
a
2
+
b
2
{\displaystyle a^{2}+b^{2}}
的形式,其中
a
{\displaystyle a}
和
b
{\displaystyle b}
是整數,且
a
2
+
b
2
=
(
a
+
b
i
)
(
a
−
b
i
)
{\displaystyle a^{2}+b^{2}=(a+bi)(a-bi)}
。剩下的就只有形為
4
n
+
3
{\displaystyle 4n+3}
的質數了。
形為
4
n
+
3
{\displaystyle 4n+3}
的質數也是高斯質數。假設
g
=
p
+
0
i
{\displaystyle g=p+0i}
,其中
p
=
4
n
+
3
{\displaystyle p=4n+3}
是質數,且可以分解為
g
=
h
k
{\displaystyle g=hk}
。那麼
p
2
=
N
(
g
)
=
N
(
h
)
N
(
k
)
{\displaystyle p^{2}=N(g)=N(h)N(k)}
。如果這個分解是非平凡的,那麼
N
(
h
)
=
N
(
k
)
=
p
{\displaystyle N(h)=N(k)=p}
。但是,任何兩個平方數的和都不能寫成
4
n
+
3
{\displaystyle 4n+3}
的形式。因此分解一定是平凡的,所以
g
{\displaystyle g}
是高斯質數。
類似地,
i
{\displaystyle i}
乘以一個形為
4
n
+
3
{\displaystyle 4n+3}
的質數也是高斯質數,但
i
{\displaystyle i}
乘以形為
4
n
+
1
{\displaystyle 4n+1}
的質數則不是。
如果
g
{\displaystyle g}
是範數為質數的高斯整數,那麼
g
{\displaystyle g}
是高斯質數。這是因為如果
g
=
h
k
{\displaystyle g=hk}
,那麼
N
(
g
)
=
N
(
h
)
N
(
k
)
{\displaystyle N(g)=N(h)N(k)}
。由於
N
(
g
)
{\displaystyle N(g)}
是質數,因此
N
(
h
)
{\displaystyle N(h)}
或
N
(
k
)
{\displaystyle N(k)}
一定是1,所以
h
{\displaystyle h}
或
k
{\displaystyle k}
一定是可逆元素。