在航天動力學裏,一個圓錐曲線的離心率向量是一個向量,從焦點指向近拱點,量值等於軌道的離心率純量,是個無因次量。
計算
離心率向量 (eccentricity vector) 是個大小等於軌道離心率 (eccentricity ) 且方向指向近心點 (periapsis 或 pericenter) 的向量。對開普勒軌道而言,它是個運動常數。在使用狀態向量 () 進行軌道測定或軌道決定 (orbit determination, OD) 時,它可以決定諸多與運動有關的軌道要素,如離心率 () (eccentricity) 及半長軸 () (semi-major axis),並可指出近心點方向,以便計算近心點引數 (argument of periapsis)、真近心點離角(真近點角) (true anomaly)。在攝動或擾動 (perturbation) 分析時, 因為實際軌道上的攝動(非開普勒)力將使密切 (osculating) 離心率向量不斷變化,故用來分析幾乎為圓形的軌道時非常有用。該向量可以由任何時間的軌道狀態向量(orbital state vector)中的速度向量與位置向量計算出來[1]:
第二個等式可以直接根據以下向量恆等式(運算並分別集結位置和速度分量後)推導出來:
其中:
- 為 位置向量 (position vector)
- 為 速度向量 (velocity vector)
- 為 比角動量向量 (specific angular momentum vector) ()
- 為 標準重力參數 (standard gravitational parameter)。
換另一種表示方法,離心率向量也可以由質量為的物體的角動量計算出來:
- 。
參閱
Wikiwand in your browser!
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.