血管緊張素轉化酶2(英語:Angiotensin-converting enzyme 2ACE2;人類的ACE2常被稱為hACE2[5])在人類基因組中由X染色體上的基因編碼,是一種表現於動脈心臟腎臟腸道等組織細胞表面的膜蛋白,為血管緊張素Ⅰ轉化酶(ACE)的一個旁系同源體英語Homology (biology)

Quick Facts 血管緊張素轉化酶2, 已知的結構 ...
血管緊張素轉化酶2
已知的結構
PDB直系同源搜尋: PDBe RCSB
識別號
別名ACE2;, ACEH, angiotensin I converting enzyme 2, ACE 2
外部IDOMIM300335 MGI1917258 HomoloGene41448 GeneCardsACE2
基因位置(人類
X染色體
染色體X染色體[1]
X染色體
血管緊張素轉化酶2的基因位置
血管緊張素轉化酶2的基因位置
基因座Xp22.2起始15,561,033 bp[1]
終止15,602,148 bp[1]
RNA表達模式


查閱更多表達數據
直系同源
物種人類小鼠
Entrez
Ensembl
UniProt
mRNA​序列

NM_021804
​NM_001371415

NM_001130513
​NM_027286

蛋白序列

NP_068576
​NP_001358344

NP_001123985
​NP_081562

基因位置​(UCSC)Chr X: 15.56 – 15.6 MbChr X: 162.92 – 162.97 Mb
PubMed​查找[3][4]
維基數據
檢視/編輯人類檢視/編輯小鼠
Close

ACE2有切割多肽的功能,其多肽酶結構域位於細胞膜外側,一般在細胞膜上作用,可被脫落酶英語sheddase切割後脫離細胞、自組織間移除。ACE2可分別將血管緊張素I血管緊張素II轉化為血管緊張素(1-9)血管緊張素(1-7)英語Angiotensin (1-7)[6][7],因而在心血管組織中有抗氧化與抗炎等功能,在肺臟中可避免肺組織的損傷,在骨骼肌中或許能抑制肌肉纖維化。ACE2的表現可緩解許多心血管疾病的徵狀,其表現量的下降則與這些疾病有相關性,有研究嘗試開發體外合成的人重組ACE2(rhACE2)為這些疾病的一種藥物。除切割多肽外,ACE2還有若干和多肽酶無關的功能。

ACE2還被SARS-CoVSARS-CoV-2(屬乙型冠狀病毒)和人類冠狀病毒NL63(屬甲型冠狀病毒)等冠狀病毒用作感染細胞的受體[8],這些病毒棘蛋白的受體結合域[9](RBD,receptor binding domain)可結合ACE2,進而使病毒進入細胞內。三種病毒的RBD均與ACE2的相同區域結合,但NL63病毒的RBD結構和另兩者差異較大,與ACE2的結合應為趨同演化的結果,且結合力較另外兩種病毒弱。SARS相關病毒也並非皆以ACE2為感染細胞的受體,SARS-CoV-2支系的共祖可能具有和ACE2結合的能力,此支系的病毒又與SARS-CoV支系的病毒發生重組,使部分SARS-CoV相關病毒也獲得此能力。

結構

血管緊張素轉化酶2(ACE2)最早於2000年自cDNA基因庫中被發現,為血管緊張素轉化酶(ACE)第一個被發現的旁系同源體英語Homology (biology)[6],ACE2的基因位於人類基因組中的X染色體,包括18個外顯子,編碼的蛋白由805個氨基酸組成,與ACE的氨基酸序列相似度為42%[10],是一個帶有鋅離子金屬蛋白,屬單次跨膜蛋白英語Bitopic protein(第一型膜蛋白),其N端結構域為一M2多肽酶,位於細胞膜外側,可再細分為I與II兩個子結構域(由一個α螺旋相連)[11]C端則與另一種名為collectrin的蛋白同源,包括疏水的跨膜結構域和一個氨基酸轉運體英語Amino acid transporter結構域,位於細胞內[12]

ACE2因有跨膜區域而造成其結構測定的困難,過去僅知其N端多肽酶的結構,直到2020年科學家才用低溫電子顯微鏡測出了與另一蛋白B0AT1英語Sodium-dependent neutral amino acid transporter B(0)AT1結合狀態的完整ACE2結構,發現兩個ACE2和兩個B0AT1組成一複合體,複合體中兩個ACE2有交互作用,B0AT1間則無交互作用,僅與鄰近的ACE2作用,因此研究人員推測細胞膜上的ACE2也可能會形成二聚體[13][14]

切割機理

ACE2的活性位點有一個鋅離子(位於多肽酶的子結構域I),和ACE2的兩個組氨酸、一個穀氨酸與一個分子錯合,切割多肽時,錯合的水分子作為一親核基,進攻多肽的羰基,形成四面體形的中間產物,並將質子轉移到穀氨酸上,此時組氨酸上的氫離子轉移到要被切除的氨基酸之氨基上,隨後肽鍵斷裂,此氨基酸作為離去基從中間產物脫離,並從穀氨酸處獲得氫離子[11]

Thumb

表現組織

人體幾乎所有器官組織都有表現血管緊張素轉化酶(ACE),而血管緊張素轉化酶2(ACE2)則表現於II型肺泡細胞小腸腸上皮細胞英語enterocyte血管內皮細胞血管平滑肌細胞、腎臟上皮細胞等,腦部許多神經元膠細胞可能也有表現ACE2[10][15]。多數組織中ACE2的轉錄都是由一個較接近其基因的啟動子起始,但肺臟中ACE2基因的轉錄多起始於一個較遠的啟動子,兩啟動子轉錄出的mRNA5端序列稍有不同[16][17]

功能

切割多肽

Quick Facts 血管緊張素轉化酶2, 命名 ...
血管緊張素轉化酶2
識別碼
EC編號 3.4.17.23
數據庫
IntEnz IntEnz瀏覽
BRENDA英語BRENDA BRENDA入口
ExPASy英語ExPASy NiceZyme瀏覽
KEGG KEGG入口
MetaCyc英語MetaCyc 代謝路徑
PRIAM英語PRIAM_enzyme-specific_profiles 概述
PDB RCSB PDB PDBj PDBe PDBsum
Close

血管緊張素轉化酶2主要的功能是與血管緊張素Ⅰ轉化酶(ACE)拮抗,ACE可將無活性的血管緊張素Ⅰ切割成血管緊張素II,後者可促進抗利尿激素醛固酮的分泌,以及刺激血管平滑肌收縮,使血壓上升;ACE2則分解血管緊張素Ⅰ和血管緊張素II以抑制其作用,將其C端的氨基酸移除,分別將前者轉化成血管緊張素(1-9),將後者轉化成血管緊張素(1-7)英語Angiotensin (1-7)[註 1],其中切割血管緊張素II比切割血管緊張素I的能力高出許多,切割的產物中,血管緊張素(1-9)的功能不明,血管緊張素(1-7)則可刺激一氧化氮合成、抑制MAPK/ERK途徑英語MAPK/ERK pathwayTGFβ途徑英語TGF beta signaling pathway、以及抑制活性氧物質的生成,因此在心血管組織中有抗氧化與抗炎等功能[10][13]。許多研究結果顯示ACE2表現量的下降與數種心血管疾病有相關性[19]

肺泡細胞表現的ACE2有保護肺組織的功能。血管緊張素II可促進肺泡細胞凋亡與肺纖維化[20],因此ACE2將其分解可保護肺免於損傷[21],加上血管緊張素(1-7)可與MAS1英語Mas受體結合,啟動下游反應以抑制血管緊張素II的作用[21][22]

骨骼肌中,血管緊張素II與血管緊張素(1-7)均有重要功能。血管緊張素II透過多種途徑降低肌肉蛋白質的合成,包括抑制AktmTOR英語mTOR途徑、促進肌萎縮素1英語FBXO32肌環指蛋白1英語TRIM63的合成、生成活性氧物質而活化胱天蛋白酶途徑使細胞凋亡等,肌肉蛋白合成與分解的失衡會造成肌萎縮英語muscular atrophy、肌纖維化等徵狀[23][24],因此將血管緊張素II被轉化成血管緊張素(1-7)可停止其作用,且後者還可與MAS1英語Mas受體結合,活化另一條反應途徑而抑制肌纖維化[13][25]。相較之下ACE2在骨骼肌的直接影響還有待更多研究闡明,有初步研究結果顯示在萎縮的肌肉組織中,ACE2可能可降低纖維化[13][26]

由於ACE2的表現可緩解許多心血管疾病的徵狀,有研究嘗試在體外以細胞株合成ACE2(人重組ACE2;rhACE2)以期作為這些疾病的一種療法[17][27]

除了切割血管緊張素II外,ACE2還可切割強啡肽A英語Dynorphin Aapelin-13英語apelin-13[28]、apelin-36、去精氨酸緩激肽(des-Arg(9) bradykinin)、β-酪啡肽英語casomorphin等其他多肽,惟其生理意義仍不明[17][29]

其他

除了切割多肽外,ACE2還有些與其蛋白酶活性無關的功能。有研究顯示ACE2可與整合素結合,有助於細胞黏附[13][30]。此外ACE2還參與了另一蛋白B0AT1英語Sodium-dependent neutral amino acid transporter B(0)AT1膜囊泡運輸過程,為其伴護蛋白,與B0AT1形成一複合體,協助將其轉運至細胞膜[14]

移除

ACE2的跨膜結構域可被一種稱為金屬蛋白酶17英語MMP17(MMP17)的脫落酶英語sheddase切割,將其胞外部分釋放到血液中,進而從組織間移除[31][32],此過程受到許多調控,例如有一種鈣調蛋白可與ACE2結合以抑制MMP17的切割[33]血管緊張素II也可促進MMP17的活性,把會將其分解的ACE2移除[34],另外許多病理狀況、發炎反應也可促進MMP17對ACE2的切割。脫落酶的切割會造成心血管組織中ACE2的流失、血液中ACE2的濃度升高,因此後者可當作心臟衰竭心房顫動動脈粥樣硬化慢性腎臟病心肌梗塞中風等多種疾病的生物標記[13][35]

冠狀病毒受體

Thumb
SARS-CoV-2以ACE2為受體感染細胞

血管緊張素轉化酶2被許多冠狀病毒用來當作感染細胞的受體,包括造成普通感冒人類冠狀病毒NL63(屬甲型冠狀病毒[36]、與MERS-CoV關係接近的祖魯棕蝠冠狀病毒(NeoCoV)[37]、造成SARSSARS-CoV[38][39]和造成2019冠狀病毒病SARS-CoV-2(屬乙型冠狀病毒[40]等,這些病毒棘蛋白S1結構域中的受體結合結構域(receptor binding domain;RBD)和ACE2胞外的區域結合後,棘蛋白可能被細胞表面的跨膜絲氨酸蛋白酶2(TMPRSS2)切割,促使病毒外膜和宿主細胞膜融合而讓病毒進入細胞質[41];此外SARS-CoV與SARS-CoV-2[42]還可能在不被TMPRSS2切割的情況下,與ACE2受體一起藉由內吞作用進入細胞,隨後其棘蛋白在溶酶體中被組蛋白酶切割後,再從溶酶體進入細胞質中[43][44][45]

SARS-CoV與SARS-CoV-2的RBD結構相似,氨基酸序列相似度為72%,SARS-CoV的RBD和ACE2結合時,與其直接接觸的氨基酸共有16個,其中8個位點在SARS-CoV-2中為對應相同氨基酸,另外8個則不同,因此兩者與ACE2結合的機制略有差異[46]。SARS-CoV-2的RBD有6個氨基酸為與ACE2結合所需,包括白氨酸455、苯丙氨酸486、穀氨醯胺493、絲氨酸494、天冬酰胺501與酪氨酸505[47],與ACE2的結合力高於SARS-CoV[48]。人類冠狀病毒NL63之RBD則與前兩者的結構差異較大,卻能和ACE2的同一區域結合,為趨同演化的結果,但NL63和ACE2的結合力較弱,可能是其感染徵狀較輕微的原因之一[46]

SARS相關病毒亦非皆以ACE2為感染細胞的受體,SARSr-CoV中,使用ACE2為受體的病毒株包含SARS-CoV支系的果子狸SARS冠狀病毒WIV1SHC014WIV16LYRa11、Rs4874、Rs7327等(以上病毒的RBD序列可再分成兩支),以及SARS-CoV-2支系的RaTG13穿山甲冠狀病毒,上述以ACE2為受體的蝙蝠病毒皆是在中國雲南省發現;SARS-CoV支系的YNLF_31CYNLF_34CBtKY72BM48-3116BO133HKU3Rm1Rf1等,以及SARS-CoV-2支系的RmYN02之RBD則應無法與ACE2結合,而是使用其他蛋白作為感染的受體,這些病毒株的RBD大多具有兩段序列缺失,可能因此影響和ACE2結合的能力[註 2][49]。SARSr-CoV中,與ACE2的結合能力應為多次起源,有學者提出SARS-CoV-2支系病毒的共祖可能可和ACE2結合(RmYN02則是後來才喪失了此能力),後來某個SARS-CoV-2支系的病毒曾和SARS-CoV支系的病毒發生重組,造成部分SARS-CoV支系的病毒也獲得了和ACE2結合的能力[49]

演化

早期的脊索動物已具有ACE2,海鞘尾索動物)與文昌魚頭索動物)皆尚無血管緊張素腎素-血管緊張素系統的多數蛋白,但已具有ACE與ACE2[50]脊椎動物魚類兩生類爬行類鳥類哺乳類)皆具有ACE2,且其結構的保守度很高[46]。此外有些細菌(如野油菜黃單胞菌英語Citrus canker柑橘致病變種)具有和ACE同源的蛋白,體外實驗結果顯示其具有將血管緊張素I切割成血管緊張素II的能力[51],以各生物中的ACE與ACE2序列製作的系統發生樹顯示細菌ACE與海鞘、文昌魚的ACE2關係較為接近,可能是由海鞘的ACE2經水平轉基因至細菌基因組中[50]

有研究分析哺乳類的ACE2序列,發現有4%的位點(皆位於具有酵素活性的結構域)正發生定向選擇[52]

參見

註腳

參考文獻

外部連結

Wikiwand in your browser!

Seamless Wikipedia browsing. On steroids.

Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.

Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.