Loading AI tools
对测量对象的理论值进行估计的数学方法 来自维基百科,自由的百科全书
在測量學中,測量平差,也稱為平差或最小二乘平差(英語:Least-squares adjustment),是指依據某類最優化準則對帶有觀測誤差的測量數據進行調整,以求得測量對象的最佳估計值的理論和方法。測量平差的問題來源於測量過程中的多餘觀測。[1][2]受到測量誤差的影響,通過多餘觀測得到的測量值必然無法精確滿足測量對象之間應存在的數學關係,這些測量值之間的不一致性被稱為不符值或閉合差。[3][4]包含多餘觀測的觀測值在數學上組成了一個無精確解的超定系統,但根據所選取的最優化準則,可以從該系統中求得一個符合該準則的近似解。[5][6]
測量平差的基本任務即是處理觀測值之間的不符值,並依據選取的最優化準則,求得觀測量的最佳估計值,並對其精度進行評定。[7]由於經典的測量平差方法通常選取最小二乘準則作為最優化準則,這類經典的平差方法也被稱為最小二乘平差。[8]依據經典測量平差求得的估計值是測量對象的最優線性無偏估計。[9][10]
平差的函數模型是描述觀測量與未知量之間的數學關係的模型。這些數學關係即可是幾何關係,也可是物理關係。例如,大地測量中的測量控制網和攝影測量中的共線方程描述的是幾何關係,而在重力測量、衛星定軌或是形變監測中使用的模型描述的則是物理關係。函數模型中的觀測量在實際的觀測過程中確定,而未知量可根據模型的需要進行選取,測量平差的目的即是對這些未知量做出最優估計。[1][2]
函數模型的觀測量指經測量得到的測量對象的測量值,可分為必要觀測量和多餘觀測量。
必要觀測量是唯一確定函數模型所需要的觀測量,僅與函數模型有關,必要觀測量之間相互獨立。[11]以平面三角形為例,唯一確定其形狀需要兩個角度觀測量,必要觀測數為2;而唯一確定其形狀和大小則需要兩個角度及一條邊長、一個角度及兩條邊長,或是三條邊長的觀測量,必要觀測數為3。
多餘觀測量則是在必要觀測以外進行額外觀測得到的觀測量,其數目 亦稱為自由度或冗餘度(英語:Redundancy)[8],由總觀測數 和必要觀測數 確定:
由多餘觀測可列出與其數目相對應的條件方程,從而檢核出條件方程中的不符值或閉合差,進而對測量對象的理論值和測量精度進行估計。[14]
函數模型的未知量通常特指模型的待求參數。其與觀測量的區別在於,這些未知量既可以是被直接觀測的對象(例如上述的角度和邊長),亦可以是對觀測量產生影響的因素(例如幾何圖形中點的坐標)。將觀測量表達成未知量的函數的方程即為觀測方程。函數模型中未知量(參數)的數目 與必要觀測量的數目 之間的數量關係與函數模型的類型一一對應:[1][15]
測量平差中的條件方程是指描述各觀測量之間,以及各觀測量與參數之間應當滿足的數學關係的方程式,其數學形式可統一為[1][15]
式中, 表示經測量得到的觀測量的理論值, 表示選取的參數的理論值。根據函數模型中選取參數的不同,條件方程有以下特殊形式:
在大地測量中,條件方程選取的依據通常是觀測量之間的幾何關係。[16]
以右圖的平面測角三角網為例,其被測量的 、 和 等九個角度需要滿足內角和條件、圓周條件和邊長條件三類條件方程:[1][17]
上式可由正弦定理導出,將未知邊長 通過兩種方式表示由已知邊長 的求得:
消去作為係數的已知邊長 ,即可得到僅由角度測量值表示的邊長條件方程。
測量平差中的觀測方程是指將觀測量表達為參數的函數的方程式,其數學形式可統一成:[1][15]
在觀測方程中,觀測量和參數分別列於等號的兩側,且每一個觀測量都對應一條觀測方程。[17][18]相較於條件方程,觀測方程無需考慮觀測量之間應滿足的數學關係,更為簡單且便於電算。[19]
平差的隨機模型描述的是平差模型中各類隨機變量自身以及隨機量之間的統計相關性質。在經典平差方法中,觀測量被假設為僅包含偶然誤差的隨機變量,服從於正態分佈。因此,常以方差和中誤差描述這類隨機變量自身的精度,並以協方差描述隨機變量之間的相關性,而方差-協方差矩陣即是這類隨機變量的隨機模型:[12][13]
式中, 是隨機變量的方差-協方差陣,通常直接簡稱為方差陣或協方差陣; 和 分佈是隨機變量的協因數陣和權陣,且互為對方的逆; 是該隨機變量的先驗單位權方差。
假設獨立觀測值 的方差是 ,則其有方差陣
選定先驗單位權中誤差為 ,按下式確定觀測值的權 :
因此,各觀測值之間權的比例僅取決於觀測值的方差(即觀測值的精度指標),即有 ,按如下方式組成權陣
又觀測值的協因數陣與權陣互逆,則有 .
若相關觀測值有協方差陣
式中 為各觀測量自身的方差, 為兩相關觀測量之間的協方差。
選定先驗單位權中誤差為 ,相關觀測值的協因數陣為 ,相關觀測量的權陣則被定義為 .
以最小二乘為最優化準則的平差方法,可根據函數模型的不同分為條件平差、間接平差和混合平差等類型。這些模型的共同點在於,其模型中的誤差均被假設為僅包含偶然誤差,且通過最小二乘準則得到的觀測量和參數的估計值具有相同的統計性質。因此,這些平差模型亦被統稱為經典平差模型,其在形式上可以統一為概括平差模型。[20][21][22]
各類平差模型的計算步驟類似,首先建立函數模型並對其進行線性化,其次組成法方程並求解,再次由解得的聯繫數或參數求出觀測值的改正數和觀測值的估計值,最後進行精度評定。
條件平差方法是以僅給出觀測量之間約束條件的條件方程作為函數模型的平差方法,其函數模型的一般形式為 ,所有的觀測值和非零常數都位於方程組的同一側。方程組中,條件方程的個數與多餘觀測量 相等,觀測量的個數則為 。
取 作為係數矩陣, 作為常數向量,該函數模型可線性化為 ;
又由 ,因此取閉合差為 ,將上式表述為觀測值改正數 與觀測值閉合差 之間的關係式,即
以最小二乘準則 作為該函數模型的附加條件進行解算,最終觀測值改正數和觀測量估計值的解分別為
由協因數傳播律,觀測值改正數和觀測量估計值的協因數陣分別為
解算過程中出現的各矩陣和向量的大小、計算公式和含義如下表所示:
符號 | 列數 | 行數 | 計算公式 | 含義 |
---|---|---|---|---|
經實際測量獲得 | 觀測量的觀測值 | |||
觀測值的改正數 | ||||
觀測量的估計值,具有最優無偏估計的性質 | ||||
條件方程的係數矩陣,表達觀測量之間的限制關係 | ||||
條件方程的常數向量,表達與觀測量的取值無關的部分 | ||||
條件方程的常數向量,表達觀測量之間的不符值或閉合差 | ||||
由隨機模型確定 | 對稱矩陣,觀測值的權陣 | |||
對稱矩陣,觀測值的協因數陣 | ||||
法方程的係數矩陣,僅當其可逆時該平差模型有唯一解 | ||||
拉格朗日函數中的聯繫數向量 |
間接平差方法是以觀測方程為函數模型的平差方法,亦稱參數平差,其函數的一般形式為 ,方程組中一側僅有觀測值,另一側則是所選參數和非零常數,觀測方程的個數與觀測量的個數 相等,參數的個數則與必要觀測數 相等。
類似於條件平差,取 作為係數矩陣, 作為常數向量,該函數模型可線性化為 ;
設參數有近似值 ,即有 ;又由 ,因此取約化觀測量為 ,線性化後的函數模型亦可表示為
該式也稱誤差方程,式中由參數改正數 表達的觀測值改正數(即觀測值的後驗誤差)需滿足最小二乘準則 ,以此求得自由極值下的參數改正數和參數估計值分別為[23][24]
在誤差方程中,由參數改正數 表達的觀測量、最終觀測值改正數和觀測量估計值的解分別為
由協因數傳播律,參數估計值、觀測值改正數和觀測量估計值的協因數陣分別為
解算過程中出現的各矩陣和向量的大小、計算公式和含義如下表所示:
符號 | 列數 | 行數 | 計算公式 | 含義 |
---|---|---|---|---|
經實際測量獲得 | 觀測量的觀測值 | |||
觀測值的改正數 | ||||
觀測量的估計值,具有最優無偏估計的性質 | ||||
根據實際情況估計 | 參數的近似值 | |||
參數的改正數 | ||||
參數的估計值,具有最優無偏估計的性質 | ||||
觀測方程的係數矩陣,表達觀測量和參數的函數關係 | ||||
觀測方程的常數向量,表達與參數的取值無關的部分 | ||||
觀測值的近似值,由參數的近似值確定 | ||||
誤差方程的常數向量,表達觀測量與近似觀測量的差異 | ||||
由隨機模型確定 | 對稱矩陣,觀測值的權陣 | |||
對稱矩陣,觀測值的協因數陣 | ||||
法方程的係數矩陣,僅當其可逆時該平差模型有唯一解 | ||||
法方程的常數向量 |
概括平差方法的提出旨在同一條件平差和間接平差等經典平差方法的函數模型,以對其共性和特性進行研究。從概括平差方法出發可以證明各經典平差模型之間的等價性,從而將通過概括平差方法證明的數學性質推廣到所有經典平差方法中。附有限制條件的間接平差模型和附有限制條件的條件平差模型均已被證明可作為概括模型的函數模型。[20][21][22]
在此以附有限制條件的條件平差為例,其具體形式為
模型中共有 個觀測量和 個參數,其中獨立觀測量的個數為 ,獨立參數的個數為 ;因此,一般條件方程的個數為 ,限制條件方程的個數為 ,且滿足 的關係。
取 、 和 作為係數矩陣, 和 作為常數項,將該函數模型線性化為
類似於條件平差模型,以最小二乘準則 作為該函數模型的附加條件進行解算,最終參數改正數和觀測值改正數的解分別為[1][20]
參數估計值和觀測量估計值分別為
參數估計值、觀測值改正數和觀測量估計值的協方差陣分別為
解算過程中出現的各矩陣和向量的大小、計算公式和含義如下表所示:
符號 | 列數 | 行數 | 計算公式 | 含義 |
---|---|---|---|---|
經實際測量獲得 | 觀測量的觀測值 | |||
觀測值的改正數 | ||||
觀測量的估計值,具有最優無偏估計的性質 | ||||
根據實際情況估計 | 參數的近似值 | |||
參數的改正數 | ||||
參數的估計值,具有最優無偏估計的性質 | ||||
一般條件方程的係數矩陣,表達一般條件方程和觀測量之間的函數關係 | ||||
一般條件方程的係數矩陣,表達一般條件方程和參數之間的函數關係 | ||||
限制條件方程的係數矩陣,表達參數之間的限制關係 | ||||
一般條件方程的常數向量,表達一般條件方程中與觀測量和參數的取值無關的部分 | ||||
限制條件方程的常數向量,表達限制條件方程中與參數的取值無關的部分 | ||||
由隨機模型確定 | 對稱矩陣,觀測值的權陣 | |||
對稱矩陣,觀測值的協因陣 | ||||
法方程的係數矩陣,僅當其可逆時該平差模型有唯一解 | ||||
對稱矩陣 | ||||
對稱矩陣 | ||||
常數向量 |
根據概括平差方法和各類經典平差方法的函數模型,可以得出如下轉換關係:[1][20]
概括平差的函數模型 | 概括平差的法方程 | 轉換關係 | 轉換後的平差方法 | 轉換後的平差方法的函數模型 | 轉換後的平差方法的法方程 |
---|---|---|---|---|---|
附有限制條件的間接平差方法 | |||||
附有未知參數的條件平差方法 | |||||
且 | 條件平差方法 | ||||
且 | 間接平差方法 |
值得注意的是,當係數矩陣 時,該方法轉化為附有限制條件的間接平差方法,且該方法中亦包含有一般觀測方程和限制條件方差。因此附有限制條件的間接平差方法是與附有限制條件的條件平差方法等價的概括平差方法。[21][22]
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.