正弦定理是三角學中的一個定理。它指出:對於任意 △ A B C {\displaystyle \triangle ABC} , a {\displaystyle a} 、 b {\displaystyle b} 、 c {\displaystyle c} 分別為 ∠ A {\displaystyle \angle A} 、 ∠ B {\displaystyle \angle B} 、 ∠ C {\displaystyle \angle C} 的對邊, R {\displaystyle R} 為 △ A B C {\displaystyle \triangle ABC} 的外接圓半徑,則有 a sin ∠ A = b sin ∠ B = c sin ∠ C = 2 R {\displaystyle {\frac {a}{\sin \angle A}}={\frac {b}{\sin \angle B}}={\frac {c}{\sin \angle C}}=2R} 證明 法一 做一個邊長為 a {\displaystyle a} , b {\displaystyle b} , c {\displaystyle c} 的三角形,對應角分別是 A {\displaystyle A} , B {\displaystyle B} , C {\displaystyle C} 。從角 C {\displaystyle C} 向 c {\displaystyle c} 邊做垂線,得到一個長度為h的垂線和兩個直角三角形。 顯然: sin A = h b {\displaystyle \sin A={\frac {h}{b}}} 且: sin B = h a {\displaystyle \;\sin B={\frac {h}{a}}} 故: h = b sin A = a sin B {\displaystyle h=b\,\sin A=a\,\sin B} 故: sin A a = sin B b {\displaystyle {\frac {\sin A}{a}}={\frac {\sin B}{b}}} 同理可證: sin B b = sin C c {\displaystyle {\frac {\sin B}{b}}={\frac {\sin C}{c}}} 法二 作 △ A B C {\displaystyle \triangle ABC} 的外接圓,設半徑為 R {\displaystyle R} , B C = a {\displaystyle BC=a} 角A為銳角時 由於 ∠ A {\displaystyle \angle A} 與 ∠ D {\displaystyle \angle D} 所對的弧都為 B C {\displaystyle BC} ,根據圓周角定理可瞭解到 ∠ A = ∠ D {\displaystyle \angle {\rm {A=\angle D}}} 由於 B D {\displaystyle BD} 為外接圓直徑, B D = 2 R , ∠ B C D = π 2 r a d {\displaystyle {\rm {BD}}=2R,\ \angle {\rm {BCD}}={\pi \over 2}rad} 所以 sin ∠ D = a 2 R {\displaystyle \sin \angle D={a \over 2R}} sin ∠ A = a 2 R {\displaystyle \sin \angle A={a \over 2R}} a sin ∠ A = 2 R {\displaystyle {a \over \sin \angle A}=2R} 角A為直角時 因為 B C = a = 2 R {\displaystyle BC=a=2R} ,可以得到 sin ∠ A = sin π 2 = 1 {\displaystyle \sin \angle A=\sin {\pi \over 2}=1} 所以可以證明 a sin ∠ A = 2 R {\displaystyle {a \over \sin \angle A}=2R} 角A為鈍角時 線段 B D {\displaystyle BD} 是圓的直徑 根據圓內接四邊形對角互補的性質 ∠ D = π − ∠ B A C {\displaystyle \angle {\rm {D={\pi }-\angle BAC}}} 所以 sin ∠ B A C = sin ∠ D {\displaystyle \qquad \sin \angle BAC=\sin \angle D} 因為 B D {\displaystyle BD} 為外接圓的直徑 B D = 2 R {\displaystyle BD=2R} 。根據正弦定義 sin ∠ B A C = sin ∠ D = a 2 R {\displaystyle {\sin \angle BAC}={\sin \angle D}={a \over 2R}} 變形可得 a sin ∠ B A C = 2 R {\displaystyle {a \over \sin \angle BAC}=2R} 根據以上的證明方法可以證明得到得到三角形的一條邊與其對角的正弦值的比等於外接圓的直徑,即 a sin ∠ A = b sin ∠ B = c sin ∠ C = 2 R {\displaystyle {\frac {a}{\sin \angle A}}={\frac {b}{\sin \angle B}}={\frac {c}{\sin \angle C}}=2R} 運用 三面角正弦定理 若三面角的三個面角分別為 α {\displaystyle \alpha } 、 β {\displaystyle \beta } 、 γ {\displaystyle \gamma } ,它們所對的二面角分別為 A {\displaystyle A} 、 B {\displaystyle B} 、 C {\displaystyle C} ,則 sin α sin A = sin β sin B = sin γ sin C {\displaystyle {\frac {\sin \alpha }{\sin A}}={\frac {\sin \beta }{\sin B}}={\frac {\sin \gamma }{\sin C}}} [1] 多邊形的正弦關係 O A sin ∠ O B A = O B sin ∠ O A B , O B sin ∠ O C B = O C sin ∠ O B C , O C sin ∠ O D C = O D sin ∠ O C D , O D sin ∠ O E D = O E sin ∠ O D E , O E sin ∠ O A E = O A sin ∠ O E A {\displaystyle {\frac {OA}{\sin \angle OBA}}={\frac {OB}{\sin \angle OAB}},{\frac {OB}{\sin \angle OCB}}={\frac {OC}{\sin \angle OBC}},{\frac {OC}{\sin \angle ODC}}={\frac {OD}{\sin \angle OCD}},{\frac {OD}{\sin \angle OED}}={\frac {OE}{\sin \angle ODE}},{\frac {OE}{\sin \angle OAE}}={\frac {OA}{\sin \angle OEA}}} sin ∠ O A B sin ∠ O B C sin ∠ O C D sin ∠ O D E sin ∠ O E A sin ∠ O B A sin ∠ O C B sin ∠ O D C sin ∠ O E D sin ∠ O A E = O B ⋅ O C ⋅ O D ⋅ O E ⋅ O A O A ⋅ O B ⋅ O C ⋅ O D ⋅ O E = 1 {\displaystyle {\frac {\sin \angle OAB\sin \angle OBC\sin \angle OCD\sin \angle ODE\sin \angle OEA}{\sin \angle OBA\sin \angle OCB\sin \angle ODC\sin \angle OED\sin \angle OAE}}={\frac {OB\cdot OC\cdot OD\cdot OE\cdot OA}{OA\cdot OB\cdot OC\cdot OD\cdot OE}}=1} sin ∠ O A B sin ∠ O B C sin ∠ O C D sin ∠ O D E sin ∠ O E A = sin ∠ O B A sin ∠ O C B sin ∠ O D C sin ∠ O E D sin ∠ O A E {\displaystyle \sin \angle OAB\sin \angle OBC\sin \angle OCD\sin \angle ODE\sin \angle OEA=\sin \angle OBA\sin \angle OCB\sin \angle ODC\sin \angle OED\sin \angle OAE} 外部連結 [1]三面角的正弦定理及其应用. [2014-03-08]. (原始內容存檔於2021-01-08). 關於K級頂點角的正弦定理及應用 (頁面存檔備份,存於互聯網檔案館) 關於正弦定理在四面體中的類比定理 (頁面存檔備份,存於互聯網檔案館) 正弦定理證明 (頁面存檔備份,存於互聯網檔案館)參閱 數學主題餘弦定理 正切定理 角平分線長公式 中線長公式Wikiwand in your browser!Seamless Wikipedia browsing. On steroids.Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.Wikiwand for ChromeWikiwand for EdgeWikiwand for Firefox
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.