在經典物理裏,自由空間(free space)是電磁理論的一種概念,指的是一種理論的完美真空,不含有任何物質的真空。有時候,自由空間又稱為自由空間真空,或經典真空。自由空間可以恰當地被視為一種參考介質[1][2]。
許多國際單位制的單位,像安培(1948年至2018年的定義)或公尺,其定義都是建立於以自由空間為參考介質的測量值。由於實驗室所使用的參考介質並不是自由空間,實驗室得到的測量值必須經過修正,才能成為以自由空間為參考介質的測量值[3]。
自由空間的性質
自由空間是將大自然抽象化而得到的一種基線或參考狀態。實際而言,就像絕對零度,這種狀態是永遠無法達到的。自由空間有三個特定的參數:電常數 、磁常數 和真空光速 。利用麥克斯韋方程組,可以推導出這三個參數的關係式[1]:
- 。
在國際單位制裏, 和 都已設定了精確的定義值,沒有任何誤差[4]:
- [H/m] ([亨利/公尺])或 [N/A2] ([牛頓/安培2])、
- [m/sec] ([公尺/秒])。
根據這些定義值, 的定義值也是精確值[4]:
- [F/m] ([法拉/公尺])。
表徵電磁相互作用的強度的精細結構常數 ,其表達式內也有電常數 出現:
- ;
處於自由空間的參考狀態,根據麥克斯韋方程組的導引,每一種電磁波譜頻率的電磁波,像無線電波或可見光波,都是以光速 傳播。這些電磁波的電場和磁場之間的關係涉及了真空特性阻抗(characteristic impedance of vacuum) [4] :
- [Ω] ([歐姆])。
在自由空間裏,線性疊加原理對於電勢、向量勢、電場和磁場,都仍舊成立。例如,兩個電荷所共同產生的電勢,即乃其中個別電荷所產生的電勢的純量和[5]。
真空的本質
物理學家時常會用術語「真空」來指稱幾種不同的狀態。其中一種狀態是完美真空。有時候,物理學家會討論在完美真空裏所得到的理想實驗結果。這不是真正實驗可以得到的結果,而是想像出來會得到的理想結果。採用這種用法時,物理學家簡明扼要地稱呼完美真空為經典真空[6]或自由空間。實際而言,完美真空是不可能實現的!術語「部分真空」指的是真正能夠實現的不完美真空。在可實現真空與自由空間兩者之間,這提示了一個重要的分歧點,那就是,非零值壓強。
但是,在現代物理學裏,真空只是一種簡單、空無一物的空間[7]這經典概念,已被量子真空(quantum vacuum)的概念所取代。這動作將自由空間與實際真空(量子真空)分離的更遠:真空態(vacuum state)並不是空蕩蕩的一無所有!量子真空可以簡略地定義為[8]:
量子真空所描述的區域,是一種處於最低能級態,而且沒有任何真實粒子的區域。
量子真空"決不是一種簡單的空無一物的空間"[9]。再重複一遍,"將任何物理真空視為絕對空無一物的空間是個特大的錯誤"[10]。根據量子力學,真空並不是真正的空無所有,而是含有瞬時的電磁波和虛粒子突然地出現或消失。從這些短暫的事件,可以觀察到卡西米爾效應[11]、自發射(spontaneous emission)[12]、蘭姆位移[13]等等重要的物理現象。對這些問題有濃厚興趣,欲想進一步探索量子真空的各種物理行為的讀者,可以閱讀 S. Saunders 的書《The philosophy of vacuum》[14]或 Henning Genz 新近發表的書《Nothingness: the science of empty space》[15]。
量子真空到底是甚麼?很遺憾地,這最基本的問題,到今天仍舊尚未成定論。物理學家 Gerald E. Brown 這樣說[16]:
在十八世紀,牛頓力學無法解析三體問題。在大約誕生於 1910 年的廣義相對論和 1930 年的量子電動力學之後,二體問題和一體問題都變得無法解析。現代的量子場理論又發現零體問題(真空)無解。
— Gerald E. Brown, Collective Motion and the Application of Many-Body Techniques
例如,一個粒子的存在與否,與觀察者的重力態有密切關係[17]。這是盎魯效應的一個重要物理行為。關於量子真空在膨脹宇宙中所扮演的角色,物理學家提出很多推測,請參閱條目真空 (宇宙學)(Cosmological constant problem)。還有,量子真空會顯示出自發對稱性破缺[18]。
實驗室實現的自由空間
在這裏,「實現」指的是將「自由空間」這概念約化為實習(reduction to practice),或實驗具體化,例如,成為實驗室裏製備的「部份真空」。甚麼是自由空間的操作定義?雖然,從理論而言,與絕對零度所面對的狀況類似,自由空間是無法達成的,很多國際單位制的單位都是參考自由空間的性質設定的。因此,實驗者必須估計對於實際測量值所需要的修正。例如,對於部分真空的非零壓強所做的修正。對於在實驗室取得關於自由空間的測量值(例如,部分真空),國際度量衡委員會特別告誡:[3]
為了要考慮到真實狀況,像繞射、重力或真空的不完美,所有實驗得到的測量值都必須給予精確的修正。
實際而言,最新的技術可以在實驗室裏製備出相當好的真空,稱為超高真空(ultra high vacuum)。到現在為止,對於實驗室裏製備出的真空,可測量到的最低壓強大約為 10−11 [Pa] [帕斯卡][19] 。
外太空實現的自由空間
虛無縹緲的外太空含有非常稀少的物質。儘管只是部分真空,外太空的壓強大約為 10 [pPa] (1×10−11 [帕斯卡])[20]。稍加比較,地球海平面的壓強大約為 101 [kPa] (1×105 [帕斯卡])。當然,星際太空的物質分佈並不均勻。銀河系的氫原子密度大約為 1 [原子/公分3][21]。宇宙終究會連續膨脹,還是會縮塌?決定這最後命運的臨界密度估計為 3 [原子/千公升][22]。在外太空的部分真空裏,有稀少的物質(大多是氫原子)、宇宙塵和宇宙線雜訊(cosmic noise)。除此以外,還有溫度為 2.725 K 的宇宙微波背景輻射,意味着光子密度為 400 [光子/公分3][23]。
因為行星際物質和星際物質的密度超小,在許多應用領域裏,可以將行星際區域和星際區域視為自由空間。這動作所帶入的誤差微乎其微。
參考文獻
參閱
外部連結
Wikiwand in your browser!
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.