左邊的圖表示出要如何計算的和元素,當是個矩陣和B是個矩陣時。分別來自兩個矩陣的元素都依箭頭方向而兩兩配對,把每一對中的兩個元素相乘,再把這些乘積加總起來,最後得到的值即為箭頭相交位置的值。
這種矩陣乘積亦可由稍微不同的觀點來思考:把向量和各系數相乘後相加起來。設和是兩個給定如下的矩陣:
-
其中
- 是由所有元素所組成的向量(column),是由所有元素所組成的向量,以此類推。
- 是由所有元素所組成的向量(row),是由所有元素所組成的向量,以此類推。
則
舉個例子來說:
左面矩陣的列為為系數表,右邊矩陣為向量表。例如,第一行是[1 0 2],因此將1乘上第一個向量,0乘上第二個向量,2則乘上第三個向量。
一般矩陣乘積也可以想為是行向量和列向量的內積。若和為給定如下的矩陣:
- 且
其中,這裏
- 是由所有元素所組成的向量,是由所有元素所組成的向量,以此類推。
- 是由所有元素所組成的向量,是由所有元素所組成的向量,以此類推。
則
即
以 Google Sheet 為例,選取儲存格範圍或者使用陣列,在儲存格輸入
=MMULT({1,0,2;-1,3,1},{3,1;2,1;1,0})
在某些試算表軟件中必須必須按Ctrl+⇧ Shift+↵ Enter 將儲存格內的變量轉換為陣列
上述三種乘積都符合結合律:
以及分配律:
而且和純量乘積相容:
注意上述三個分開的表示式只有在純量體的乘法及加法是可交換(即純量體為一可交換環)時會相同。
其它參考文獻包括:
- Strassen, Volker, Gaussian Elimination is not Optimal, Numer. Math. 13, p. 354-356, 1969.
- Coppersmith, D., Winograd S., Matrix multiplication via arithmetic progressions, J. Symbolic Comput. 9, p. 251-280, 1990.
- Horn, Roger; Johnson, Charles: "Topics in Matrix Analysis", Cambridge, 1994.
- Robinson, Sara, Toward an Optimal Algorithm for Matrix Multiplication, SIAM News 38(9), November 2005.