孟氏定理Menelaus' theorem),以古希臘數學家梅涅勞斯英語Menelaus of Alexandria為名。它指出:如果一直線與的邊BCCAAB或其延長線分別交於LMN,則有:

Thumb
情況1:直線LNM穿過三角形ABC
Thumb
情況2:直線LNM在三角形ABC外面(M與N位置可能有錯)

它的逆定理也成立:若有三點LMN分別在的邊BCCAAB或其延長線上(有一點或三點在延長線上),且滿足

LMN三點共線。利用這個逆定理,可以判斷三點共線。 如果在上式中線段用有向線段表示,那麼右面的結果為-1。

該定理與塞瓦定理的等式僅在條件上有所不同,二者互為對偶定理。

證明

面積法證明

如情況一,連接,有

正弦定理證明

如情況一,設,則在中由正弦定理,有

同理,因對頂角相等在中有

三式相乘即得

歷史

目前不確定是誰首先發現了孟氏定理。現存最早的關於定理的內容出現在梅涅勞斯的著作《球面三角學》中。在本書中,定理的平面版本被用作證明該定理的球形版本的引理。[1]

在《天文學大成》中,托勒密將該定理應用於球形天文學中的許多問題。[2]伊斯蘭黃金時代,穆斯林學者投入了大量從事孟氏定理研究的著作,他們稱之為「關於割線的命題」(shakl al-qatta')。完全四邊形在他們的術語中被稱為「割線圖」。比魯尼的作品「天文學的鑰匙」列出了其中的一些作品;這些作品都可被歸類為托勒密的《天文學大成》內容的一部分,如al-Nayrizi和al-Khazin的作品,其中每個作品都展示了孟氏定理的特殊形式(如用角的正弦表示的等式),或作為獨立論文組成的作品,例如:

塔比·伊本·庫拉撰寫的「關於割線圖的論述」(Risala fi shakl al-qatta')。[2] Husam al-DIn al-Salar的《揭開割線圖的奧秘》(Kashf al-qina'as asrar al-shakl al-qatta'),也被稱為《割線圖之書》(Kitab al-shakl al-qatta') ,或在歐洲被稱為「完全四邊形的論文」。 Al-Tusi和Nasir al-Din al-Tusi提到了其中丟失的內容。[2] 阿爾·錫傑齊的工作。[3] Abu Nasr ibn的《Tahdhib》。[3] Roshdi Rashed和Athanase Papadopoulos,Menelaus'Spherics的早期翻譯和al-Mahani'/ al-Harawi的版本(來自阿拉伯手稿的Menelaus Spherics的重要版本,以及歷史和數學評論), De Gruyter, Series: Scientia Graeco-Arabica, 21, 2017, 890 pages. ISBN 978-3-11-057142-4

延伸閱讀

  • Russell, John Wellesley. Ch. 1 §6 "Menelaus' Theorem". Pure Geometry. Clarendon Press. 1905.

參見

參考文獻

外部連結

Wikiwand in your browser!

Seamless Wikipedia browsing. On steroids.

Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.

Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.