半正矢函數出現於半正矢公式中,其可以據兩點的經度和緯度來確定大圓上兩點之間距離,且在導航術中被廣泛地使用,因此十九和二十世紀初的導航和三角測量書中包含了半正矢值表和對數表。[34][35][36]1835年,詹姆斯·英曼(英語:James Inman)[13][37][38]在其著作《航海與航海天文學:供英國海員使用》(Navigation and Nautical Astronomy: For the Use of British Seamen)第三版中創造了「半正矢」一詞[39]以簡化地球表面兩點之間的距離計算,應用於球面三角學關於導航的部分。[2]
Zucker, Ruth. Chapter 4.3.147: Elementary Transcendental Functions - Circular functions. Abramowitz, Milton; Stegun, Irene Ann (編). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Applied Mathematics Series 55 Ninth reprint with additional corrections of tenth original printing with corrections (December 1972); first. Washington D.C.; New York: United States Department of Commerce, National Bureau of Standards; Dover Publications. 1983: 78. ISBN 978-0-486-61272-0. LCCN 64-60036. MR 0167642.
Hall, Arthur Graham; Frink, Fred Goodrich. Review Exercises [100] Secondary Trigonometric Functions. 寫於Ann Arbor, Michigan, USA. Trigonometry. Part I: Plane Trigonometry. New York, USA: Henry Holt and Company / Norwood Press / J. S. Cushing Co. - Berwick & Smith Co., Norwood, Massachusetts, USA. January 1909: 125–127 [2017-08-12].
Boyer, Carl Benjamin. 5: Commentary on the Paper of E. J. Dijksterhuis (The Origins of Classical Mechanics from Aristotle to Newton). Clagett, Marshall (編). Critical Problems in the History of Science 3. Madison, Milwaukee, and London: University of Wisconsin Press, Ltd. 1969: 185–190 [1959] [2015-11-16]. ISBN 0-299-01874-1. LCCN 59-5304. 9780299018740.
Swanson, Todd; Andersen, Janet; Keeley, Robert. 5 (Trigonometric Functions)(PDF). Precalculus: A Study of Functions and Their Applications. Harcourt Brace & Company. 1999: 344 [2015-11-12]. (原始內容存檔(PDF)於2003-06-17).
Cajori, Florian. A History of Mathematical Notations2 2 (3rd corrected printing of 1929 issue). Chicago, USA: Open court publishing company. 1952: 172 [March 1929] [2015-11-11]. ISBN 978-1-60206-714-1. 1602067147. The haversine first appears in the tables of logarithmic versines of José de Mendoza y Rios (Madrid, 1801, also 1805, 1809), and later in a treatise on navigation of James Inman (1821). See J. D. White in Nautical Magazine (February and July 1926). (NB. ISBN and link for reprint of 2nd edition by Cosimo, Inc., New York, USA, 2013.)
H. B. Goodwin, The haversine in nautical astronomy, Naval Institute Proceedings, vol. 36, no. 3 (1910), pp. 735–746: Evidently if a Table of Haversines is employed we shall be saved in the first instance the trouble of dividing the sum of the logarithms by two, and in the second place of multiplying the angle taken from the tables by the same number. This is the special advantage of the form of table first introduced by Professor Inman, of the Portsmouth Royal Navy College, nearly a century ago.
White, J. D. (unknown title). Nautical Magazine. February 1926. (NB. According to Cajori, 1929[13], this journal has a discussion on the origin of haversines.)
White, J. D. (unknown title). Nautical Magazine. July 1926. (NB. According to Cajori, 1929[13], this journal has a discussion on the origin of haversines.)
Simpson, David G. AUXTRIG (Fortran 90 source code). Greenbelt, Maryland, USA: NASA Goddard Space Flight Center. 2001-11-08 [2015-10-26]. (原始內容存檔於2008-06-16).
Nair, P. N. Bhaskaran. Track measurement systems—concepts and techniques. Rail International (International Railway Congress Association, International Union of Railways). 1972, 3 (3): 159–166. ISSN 0020-8442. OCLC 751627806.