數學中,半正矢(英文:haversed sine[1]haversinesemiversus[2][3]) 或半正矢函數是一種三角函數,是正矢函數一半,因半正矢公式出名,在早期導航術中,半正矢是一個很重要的函數,因為半正矢公式可以在給定角度位置(如經度緯度)精確地計算出任何球面上的兩點間的距離,若不使用半正矢函數,則該計算會出現和對應反運算的,因此若有半正矢函數的函數表,則能夠省去平方平方根的運算。[4]

半正矢
性質
奇偶性
定義域 (-∞,∞)
對應域 [0,1]
週期
(360°)
特定值
當x=0 0
當x=+∞ N/A
當x=-∞ N/A
最大值 (, 1)
(360°k+180°, 1)
最小值 (2, 0)
(360°k, 0)
其他性質
漸近線 N/A

臨界點
拐點
不動點 0
k是一個整數

半正矢函數是一個週期函數,其最小正週期為(360°)。 其定義域為整個實數集,值域是。 在自變量為,其中為整數)時,該函數有極大值1;在自變量為(或)時,該函數有極小值0。半正矢函數是偶函數,其圖像關於y軸對稱。

半正矢函數有很多種表示法,包括了haversin(θ)semiversin(θ)semiversinus(θ)havers(θ)hav(θ)[5][6] hvs(θ)[註 1] sem(θ)hv(θ)[7]

歷史

半正矢函數出現於半正矢公式中,其可以據兩點的經度緯度來確定大圓上兩點之間距離,且在導航術中被廣泛地使用,因此十九和二十世紀初的導航和三角測量書中包含了半正矢值表和對數表[8][9][10]第一份英文版的半正矢表由詹姆斯·安德魯(James Andrew)在1805年印刷出版[11]。而弗洛里安·卡喬里相信類似的術語在1801年就曾被約瑟夫·德門多薩以里奧斯英語Josef de Mendoza y Ríos使用過[12][13]

1835年,詹姆斯·英曼英語James Inman[13][14][15]在其著作《航海與航海天文學:供英國海員使用》(Navigation and Nautical Astronomy: For the Use of British Seamen)第三版中創造了「半正矢」一詞[16]以簡化地球表面兩點之間的距離計算,應用於球面三角學關於導航的部分。[17][16]

其他備受推崇的半正矢表還有理查德·法利(Richard Farley)發表於1856年的半正矢表[18][19]以及約翰·考菲爾德·漢寧頓(John Caulfield Hannyngton)發表於1876年的半正矢表[18][20]

半正矢在導航術中持續有相關應用,而近幾十年來發現了半正矢新的應用。如1995年來布魯斯·D·斯塔克(Bruce D. Stark)利用高斯對數英語Gaussian logarithm之清晰的月角距計算方法[21][22],以及2014年提出用於視線縮減英語Sight reduction之更緊湊的方法[7]

定義

Thumb
正弦(黃色)與半正矢(藍色)的關係
Thumb
半正矢函數在複數體的色相環複變函數圖形

半正矢定義為正矢函數的一半:[1]

其他等價的定義包括:[1]

對應的指數定義為:[23]

半正矢也可以使用麥克勞林級數來定義:[1]

微分與積分

Thumb
半正矢函數的積分在複數體的色相環複變函數圖形

半正矢函數的微分為:[1]

積分為:[1]

反半正矢

反半正矢
反半正矢的函數圖形
Thumb
反半正矢在複數體的色相環複變函數圖形

反半正矢或反半正矢函數是半正矢函數的反函數。由於半正矢函數是週期函數,導致半正矢函數是對射且不可逆的而不是一個對射函數(即多個值可能只得到一個值,例如1和所有同界角),故無法有反函數,但我們可以限制其定義域,因此,反半正矢是單射滿射也是可逆的,另外,我們也需要限制值域,將半正矢函數函數的值域定義在([0,180°])。在此定義下,其最小值為0、最大值為(180°)。該定義只考慮了實數的部分,進一步的,我們可以將反半正矢以反正弦進行定義,進一步地將之推廣到複數體:[24]

反半正矢函數也可以使用級數來定義:[24]

反半正矢函數的微分與積分為:[24]

半正矢公式

對於任何球面上的兩點,圓心角的半正矢值可以通過如下公式計算:

  • 是兩點之間的距離(沿大圓,見球面距離);
  • 是球的半徑;
  • :點 1 的緯度和點 2 的緯度,以弧度制度量;
  • :點 1 的經度和點 2 的經度,以弧度制度量。

左邊的等號 是圓心角,以弧度來度量。

半正矢定理

給出一個單位球,一個在表面的球面三角形三個過三點 的大圓所圍出來的區域。如圖,這個球面三角形的三邊分別是 ), )和 )並且角 對邊 那麼有如下關係:

[25]

相關函數

半餘矢

Thumb
半餘矢函數的函數圖形

半餘矢(英文:hacoversed sinehacoversine[26]cohaversine)是半正矢的餘角函數,為餘矢函數的一半,寫為hacoversin(θ)semicoversin(θ)hacovers(θ)hacov(θ)[27]hcv(θ)。

半餘矢定義為:

其他等價的定義包括:[26]

餘的半正矢

Thumb
餘的半正矢函數的函數圖形

餘的半正矢(英文:haversed cosine[28] or havercosine),是餘的正矢函數的一半,寫為havercosin(θ), havercos(θ), hac(θ)hvc(θ)。 餘的半正矢定義為:

其他等價的定義包括:[28]

Thumb
升餘弦分佈英語Raised cosine distribution

一個週期(0 < θ < 2π)的正弦或更常見的餘的半正矢(havercosine)波形也常用於訊號處理和控制理論中,作為脈衝窗函數的形狀(包括漢恩窗英語Hann function、漢恩–泊松窗和圖基窗),因為它平滑地(在值和斜率上連續)從0遞增到1(對於半正矢),再對稱地遞減回0。[註 1] 在這些應用中,它被稱為漢恩函數英語Hann function升餘弦濾波器。 同樣,餘的正矢(vercosine)之半值函數(havercosine)也用於概率論和統計學的升餘弦分佈英語Raised cosine distribution[29]

升餘弦分佈英語Raised cosine distribution可以使用餘的半正矢定義如下:

餘的半餘矢

Thumb
餘的半餘矢函數的函數圖形

餘的半餘矢(英文:hacoversed cosine[30]hacovercosinecohavercosine)是餘的半正矢的餘角函數,可定義為餘的餘矢函數的一半,寫為hacovercosin(θ)hacovercos(θ)hcc(θ)。 餘的半餘矢定義為:

其他等價的定義包括:[30]

註釋

參考文獻

Wikiwand in your browser!

Seamless Wikipedia browsing. On steroids.

Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.

Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.