微分幾何中,黎曼幾何(英語:Riemannian geometry)研究具有黎曼度量的光滑流形,即流形切空間上二次形式的選擇。它特別關注於角度、弧線長度及體積。把每個微小部分加起來而得出整體的數量。
此條目的語調或風格或許不適合百科全書。 (2013年12月25日) |
任意平滑流形容許黎曼度量及這個額外結構幫助解決微分拓撲問題。它成為偽黎曼流形複雜結構的入門。其中大部分都是廣義相對論的四維研究對象。
黎曼幾何古典理論
所有給出的定理中,都將用空間的局部行為(通常用曲率假設表述)來推出空間的整體結構的一些信息,包括流形的拓撲類型和"足夠大"距離的點間的關係。
- 1/4-受限 球定理:若M是完備n-維黎曼流形,其截面曲率嚴格限制於1和4之間,則M同胚於n-球。
- Cheeger's有限定理:給定常數C和D,只有有限個(微分同胚的流形算作一個)緊n-維黎曼流形,其截面曲率並且直徑。
- Gromov的幾乎平坦流形:存在一個使得如果一個n-維黎曼流形其度量的截面曲率且直徑,則其有限覆蓋微分同胚於一個零流形.
- 靈魂定理:若M是一個不緊的完備正曲率n-維黎曼流形,則它微分同胚於Rn.
- Gromov的貝蒂數定理:有一個常數C=C(n)使得若M是一個由正截面曲率的緊連通n-維黎曼流形,則它的貝蒂數之和不超過C.
- Myers定理:若一個緊黎曼流形有正Ricci曲率則它的基本群有限。
- 分裂定理:若一個完備的n-維黎曼流形有非負Ricci曲率和一條直線(在任何區間上的距離都極小的測地線)則它等度同胚於一條實直線和一個有非負Ricci曲率的完備(n-1)-維黎曼流形的直積。
- Bishop's不等式:半徑為r的球在一個有正Ricci曲率的完備n-維黎曼流形中的體積不超過歐幾里得空間中同樣半徑的球的體積。
- Gromov's緊緻性定理:所有正Ricci曲率且直徑不超過D的黎曼流形在Gromov-Hausdorff度量下是仿緊的。
- n-維環不存在有正數量曲率的度量。
- 若一個緊n-維黎曼流形的單射半徑,則數量曲率的平均值不超過n(n-1)。
- 任何有非正截面曲率的單連通黎曼流形的兩點有唯一的測地線連接。
- 設V*是一-rank2的緊緻不可約局部對稱空間,設V是一截面曲率的緊緻黎曼流形,若,且,則與等距。
- 任何有負里奇曲率的緊黎曼流形有一個離散的等距同胚群。
- 任何光滑流形可以加入有負里奇曲率的黎曼度量。
參見
參考文獻
Wikiwand in your browser!
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.