度量張量(英語:Metric tensor)在黎曼幾何裡面又叫黎曼度量,物理學譯為度規張量,是指一用來衡量度量空間中距離,面積及角度的二階張量。 當選定一個局部坐標系統 x i {\displaystyle x^{i}} ,度量張量為二階張量一般表示為 d s 2 = ∑ i j g i j d x i d x j {\displaystyle \textstyle \mathrm {d} s^{2}=\sum _{ij}g_{ij}\mathrm {d} x^{i}\mathrm {d} x^{j}} ,也可以用矩陣 ( g i j ) {\displaystyle (g_{ij})} 表示,記作為G或g。而 g i j {\displaystyle g_{ij}} 記號傳統地表示度量張量的協變分量(亦為「矩陣元素」)。 a {\displaystyle a} 到 b {\displaystyle b} 的弧線長度定義如下,其中參數定為t,t由a到b: L = ∫ a b ∑ i j g i j d x i d t d x j d t d t {\displaystyle L=\int _{a}^{b}{\sqrt {\sum _{ij}g_{ij}{\mathrm {d} x^{i} \over \mathrm {d} t}{\mathrm {d} x^{j} \over \mathrm {d} t}}}\mathrm {d} t} 兩個切向量的夾角 θ {\displaystyle \theta } ,設向量 U = ∑ i u i ∂ ∂ x i {\displaystyle \textstyle U=\sum _{i}u^{i}{\partial \over \partial x_{i}}} 和 V = ∑ i v i ∂ ∂ x i {\displaystyle \textstyle V=\sum _{i}v^{i}{\partial \over \partial x_{i}}} ,定義為: cos θ = ⟨ u , v ⟩ | u | | v | = ∑ i j g i j u i v j | ∑ i j g i j u i u j | | ∑ i j g i j v i v j | {\displaystyle \cos \theta ={\frac {\langle u,v\rangle }{|u||v|}}={\frac {\sum _{ij}g_{ij}u^{i}v^{j}}{\sqrt {\left|\sum _{ij}g_{ij}u^{i}u^{j}\right|\left|\sum _{ij}g_{ij}v^{i}v^{j}\right|}}}} 若 f {\displaystyle f} 為 R n {\displaystyle \mathbb {R} ^{n}} 到 R n {\displaystyle \mathbb {R} ^{n}} 的局部微分同胚,其誘導出的度量張量的矩陣形式 G {\displaystyle G} ,由以下方程式計算得出: G = J T J {\displaystyle G=J^{T}J} J {\displaystyle J} 表示 f {\displaystyle f} 的雅可比矩陣,它的轉置為 J T {\displaystyle J^{T}} 。著名例子有 R 2 {\displaystyle \mathbb {R} ^{2}} 之間從極座標系 ( r , θ ) {\displaystyle (r,\theta )} 到直角座標 ( x , y ) {\displaystyle (x,y)} 的座標變換,在這例子裡有: x = r cos θ {\displaystyle x=r\cos \theta } y = r sin θ {\displaystyle y=r\sin \theta } 這映射的雅可比矩陣為 J = [ cos θ − r sin θ sin θ r cos θ ] . {\displaystyle J={\begin{bmatrix}\cos \theta &-r\sin \theta \\\sin \theta &r\cos \theta \end{bmatrix}}.} 所以 G = ( g i j ) = J T J = [ cos 2 θ + sin 2 θ − r sin θ cos θ + r sin θ cos θ − r cos θ sin θ + r cos θ sin θ r 2 sin 2 θ + r 2 cos 2 θ ] = [ 1 0 0 r 2 ] {\displaystyle G=(g_{ij})=J^{\mathrm {T} }J={\begin{bmatrix}\cos ^{2}\theta +\sin ^{2}\theta &-r\sin \theta \cos \theta +r\sin \theta \cos \theta \\-r\cos \theta \sin \theta +r\cos \theta \sin \theta &r^{2}\sin ^{2}\theta +r^{2}\cos ^{2}\theta \end{bmatrix}}={\begin{bmatrix}1&0\\0&r^{2}\end{bmatrix}}\ } 這跟微積分裡極座標的黎曼度量, d s 2 = d r 2 + r 2 d θ 2 {\displaystyle \mathrm {d} s^{2}=\mathrm {d} r^{2}+r^{2}\mathrm {d} \theta ^{2}} ,一致。 歐幾里德幾何度量 二維歐幾里德度量張量: ( g i j ) = [ 1 0 0 1 ] {\displaystyle (g_{ij})={\begin{bmatrix}1&0\\0&1\end{bmatrix}}} 弧線長度轉為熟悉微積分方程式: L = ∫ a b ( d x 1 d t ) 2 + ( d x 2 d t ) 2 d t {\displaystyle L=\int _{a}^{b}{\sqrt {\left({\frac {\mathrm {d} x^{1}}{\mathrm {d} t}}\right)^{2}+\left({\frac {\mathrm {d} x^{2}}{\mathrm {d} t}}\right)^{2}}}\mathrm {d} t} 在其他坐標系統的歐氏度量: 極坐標系: ( x 1 , x 2 ) = ( r , θ ) {\displaystyle (x^{1},x^{2})=(r,\theta )} ( g i j ) = [ 1 0 0 ( x 1 ) 2 ] {\displaystyle (g_{ij})={\begin{bmatrix}1&0\\0&(x^{1})^{2}\end{bmatrix}}} 圓柱坐標系: ( x 1 , x 2 , x 3 ) = ( r , θ , z ) {\displaystyle (x^{1},x^{2},x^{3})=(r,\theta ,z)} ( g i j ) = [ 1 0 0 0 ( x 1 ) 2 0 0 0 1 ] {\displaystyle (g_{ij})={\begin{bmatrix}1&0&0\\0&(x^{1})^{2}&0\\0&0&1\end{bmatrix}}} 球坐標系: ( x 1 , x 2 , x 3 ) = ( r , ϕ , θ ) {\displaystyle (x^{1},x^{2},x^{3})=(r,\phi ,\theta )} ( g i j ) = [ 1 0 0 0 ( x 1 ) 2 0 0 0 ( x 1 sin x 2 ) 2 ] {\displaystyle (g_{ij})={\begin{bmatrix}1&0&0\\0&(x^{1})^{2}&0\\0&0&(x^{1}\sin x^{2})^{2}\end{bmatrix}}} 平坦的閔可夫斯基空間 (狹義相對論): ( x 0 , x 1 , x 2 , x 3 ) = ( c t , x , y , z ) {\displaystyle (x^{0},x^{1},x^{2},x^{3})=(ct,x,y,z)\,} ( g μ ν ) = ( η μ ν ) ≡ [ − 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 ] {\displaystyle (g_{\mu \nu })=(\eta _{\mu \nu })\equiv {\begin{bmatrix}-1&0&0&0\\0&1&0&0\\0&0&1&0\\0&0&0&1\end{bmatrix}}} 在一些習慣中,與上面相反地,時間ct的度規分量取正號而空間 (x,y,z)的度規分量取負號,故矩陣表示為: ( g μ ν ) = ( η μ ν ) ≡ [ 1 0 0 0 0 − 1 0 0 0 0 − 1 0 0 0 0 − 1 ] {\displaystyle (g_{\mu \nu })=(\eta _{\mu \nu })\equiv {\begin{bmatrix}1&0&0&0\\0&-1&0&0\\0&0&-1&0\\0&0&0&-1\end{bmatrix}}} 偽黎曼度量 Wikiwand in your browser!Seamless Wikipedia browsing. On steroids.Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.Wikiwand for ChromeWikiwand for EdgeWikiwand for Firefox
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.