Remove ads
来自维基百科,自由的百科全书
貝爾綱定理(英語:Baire category theorem,BCT)是點集拓撲學和泛函分析中的一個重要的工具。這個定理有兩種形式,每一個都給出了拓撲空間是貝爾空間的充分條件。
一個貝爾空間是一個拓撲空間,具有以下性質:對於任意可數個開稠密集Un,它們的交集∩ Un都是稠密的。
注意從以上任何一個命題都不能推出另一個,因為存在一個不是局部緊的完備度量空間(帶有定義如下的度量的無理數),也存在一個不可度量化的局部緊豪斯多夫空間(不可數福特空間)。參見以下文獻中的Steen and Seebach。
這個表述是BCT1的一個結果,有時更加有用。另外,如果一個非空的完備度量空間是可數個閉集的併集,那麼其中一個閉集具有非空的內部。
BCT1也表明每一個沒有孤立點的完備度量空間都是不可數的。(如果X是一個可數的完備度量空間且沒有孤立點,那麼在X中每一個單元素集合都是無處稠密的,因此X在它本身內是第一綱)。特別地,這證明了所有實數所組成的集合是不可數的。
BCT1表明以下每一個都是貝爾空間:
根據BCT2,每一個流形都是貝爾空間,因為它是局部緊空間,也是豪斯多夫空間。這甚至對非仿緊(因此不可度量化)的流形如長直線也是成立的。
以下是完備度量空間是貝爾空間的一個標準的證明。
設為一個開稠密子集的集合。我們希望證明交集是稠密的。一個子集 是稠密的當且僅當空間中任意一個非空的開集都與 相交。為此,我們只需證明 的任意非空開子集 有一個點 , 包含於所有的 中。為此,設為一個開子集。根據稠密性,存在和,使得:
遞歸地,我們求出和,使得:
由於當時,,因此是柯西序列,且收斂於某個極限。對於任何,根據封閉性,有:
因此,對於所有,都有且。
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.