Remove ads
来自维基百科,自由的百科全书
在线性代数中,一个矩阵 的列秩是列向量生成的最大线性无关组的向量个数。类似地,行秩是矩阵 的线性无关的横行的个数。矩阵的列秩和行秩总是相等的,因此它们可以简单地称作矩阵 的秩(Rank)。通常表示为 , 或。
设 为 矩阵。若 至少有一个 阶非零子式,而其所有 阶子式全为零,即矩阵的最高阶非零子式的阶数为r。则称 为 的秩。
对于 维线性空间 中的一个向量组 ,若 中的 个向量线性无关,且若 ,, 中 个向量都线性相关,则称 为 的极大线性无关组, 为 的秩。可以证明 的秩等于向量组 生成的子空间的维数。 矩阵 的列秩定义为 的列向量组的秩,也即矩阵的列空间的维数。类似地,矩阵的行秩定义为 的行向量组的秩,即矩阵的行空间的维数。
考虑线性映射:
对于每个矩阵 , 都是一个线性映射,同时,对每个 的 线性映射 ,都存在矩阵 使得 。也就是说,映射
是一个同构映射。所以一个矩阵 的秩还可定义为 的像的维度(像与核的讨论参见线性映射)。矩阵 称为 的变换矩阵。这个定义的好处是适用于任何线性映射而不需要指定矩阵,因为每个线性映射有且仅有一个矩阵与其对应。秩还可以定义为 的核的维度;秩-零化度定理证明它等于 的像的维度。
矩阵的行秩与列秩相等,是线性代数基本定理的重要组成部分。其基本证明思路是,矩阵可以看作线性映射的变换矩阵,列秩为像空间的维度,行秩为非零原像空间的维度,因此列秩与行秩相等,即像空间的维度与非零原像空间的维度相等(这里的非零原像空间是指约去了零空间后的商空间:原像空间)。这从矩阵的奇异值分解就可以看出来。
给出这一结果的两种证明. 第一个证明是简短的,仅用到向量的线性组合的基本性质. 第二个证明利用了正交性[1]. 第一个证明利用了列空间的基, 第二个证明利用了行向量空间的基. 第一个证明适用于定义在标量域上的矩阵,第二个证明适用于内积空间。二者都适用于实或复的欧氏空间,也都易于修改去证明当A是线性变换的情形.
令 是一个 的矩阵,其列秩为 . 因此矩阵 的列空间的维度是 . 令 是 的列空间的一组基,构成 矩阵 的列向量 ,并使得 的每个列向量是 的 个列向量的线性组合. 由矩阵乘法的定义,存在一个 矩阵 , 使得 . ( 的 元素是 与 的第 个行向量的点积.)
现在,由于 , 的每个行向量是 的行向量的线性组合,这意味着 的行向量空间被包含于 的行向量空间之中. 因此 的行秩 ≤ 的行秩. 但仅有行, 所以的行秩 ≤ = 的列秩. 这就证明了的行秩 ≤ 的列秩.
把上述证明过程中的“行”与“列”交换,利用对偶性质同样可证的列秩 ≤ 的行秩。更简单的方法是考虑的转置矩阵,则的列秩 = 的行秩 ≤ 的列秩 = 的行秩. 这证明了的列秩等于的行秩. 证毕.
令是矩阵,其行秩是. 因此的行向量空间的维度是,设是的行向量空间的一组基. 如果把这组基当作原像列向量看待,则向量集是线性独立的。 这是因为对一组标量系数,如果:
其中. 则可以推出有两个事实: (a) 是行向量空间的线性组合, 即属于的行向量空间;(b) 由于 = 0, 正交于的所有行向量,从而正交于的行向量空间的所有向量. 事实(a)与(b)结合起来,则正交于自身,这意味着 = 0. 由的定义:
再由是的行向量空间的一组线性独立的基,可知. 因而是线性独立的.
是的列空间中的向量. 因此是的列空间中个线性独立的向量. 所以的列向量空间的维数(的列秩)必然不小于. 这证明了的行秩r ≤ 的列秩. 把这一结果应用于的转置矩阵可以得到: 的列秩 = 的行秩 ≤ 列秩 = 的行秩. 这证明了的列秩等于的行秩,证毕.
最后, 还可以证明rk(A) = rk(A*), 其中A*是A的共轭转置或称施密特转置. 当A的元素都是实数, 这一结果变为rk(A) = rk(AT). 然而对于复系数矩阵,rk(A) = rk(A*)并不等价于行秩等于列秩, 需要用到上述两个证明.
令A是一个m×n矩阵. 定义rk(A)为A的列秩,A*为A的共轭转置或称施密特转置. 首先可知A*Ax = 0当且仅当Ax = 0.
其中‖·‖是欧氏范数. 这说明A的零空间与A*A的零空间相同. 由秩-零化度定理, 可得rk(A) = rk(A*A). A*A的每一个列向量是A*的列向量的线性组合. 所以A*A的列空间是A*的列空间的子空间. 从而rk(A*A) ≤ rk(A*). 即: rk(A) = rk(A*A) ≤ rk(A*). 应用这一结果于A*可获得不等式: 由于(A*)* = A, 可写作rk(A*) ≤ rk((A*)*) = rk(A). 这证明了rk(A) = rk(A*). 证毕.
我们假定A是在域F上的m × n矩阵并描述了上述线性映射。
将个维列向量排列成的矩阵A,这个对应矩阵的秩即为原向量组的秩。
原向量组线性相关的充分必要条件为:
如果
则向量组线性无关。另外,不存在
特殊的,若向量的个数大于向量的维数,则根据:
这个向量组必然线性相关。
计算矩阵A的秩的最容易的方式是高斯消去法,即利用矩阵的初等变换生成一个行阶梯形矩阵,由于矩阵的初等变换不改变矩阵的秩,因此A的行阶梯形矩阵有同A一样的秩。经过初等变换的矩阵的非零行的数目就是原矩阵的秩。
例如考虑4 × 4矩阵
我们看到第2纵列是第1纵列的两倍,而第4纵列等于第1和第3纵列的总和。第1和第3纵列是线性无关的,所以A的秩是2。这可以用高斯算法验证。它生成下列A的行阶梯形矩阵:
它有两个非零的横行。
在应用在计算机上的浮点数的时候,基本高斯消去(LU分解)可能是不稳定的,应当使用秩启示(revealing)分解。一个有效的替代者是奇异值分解(SVD),但还有更少代价的选择,比如有支点(pivoting)的QR分解,它也比高斯消去在数值上更强壮。秩的数值判定要求对一个值比如来自SVD的一个奇异值是否为零的依据,实际选择依赖于矩阵和应用二者。
计算矩阵的秩的一个有用应用是计算线性方程组解的数目。如果系数矩阵的秩等于增广矩阵的秩,则该方程组有解。在这种情况下,如果它的秩等于方程的数目那么该方程组有唯一的一个精确解。如果增广矩阵的秩大于系数矩阵的秩,则方程组是不一致(Inconsistent)的。
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.