气候变率与变化(英语:Climate variability and change)包含两件事,气候变率(climate variability)谈的是持续期间超过单一天气事件的变动,而气候变化仅指那些持续时间较长(通常为数十年或更长)的变化。气候变化可指地球史上的任何时期,但此名词现在通常用于描述当代的气候变化。自第一次工业革命以来,气候越来越受到人类活动的影响(参见人类对环境的影响)。[1]
对从冰帽(如南极冰盖)钻取的冰芯进行分析,可显示温度与全球海平面变化之间的关系。冰芯气泡中的空气也可揭示遥远过去大气中二氧化碳的变化,此类变化远早于受到现代环境的影响。这些冰芯提供的资讯一直是研究数千年来二氧化碳变化的重要指标,并提供有关古代和现代大气条件差异的宝贵信息。根据方解石和冰芯样本中的18O/16O比率(参见氧同位素比率循环(英语:Oxygen isotope ratio cycle))可用于推断遥远过去的海洋温度,是利用代理测量的一个例子。
由于人类排放温室气体,全球地表温度开始上升。全球暖化是现代气候变化的一个面向,此名词还包括降水、风暴路径和云量的变化。结果是世界各地的冰河正在显著缩减(参见1850年起的冰河退却现象(英语:retreat of glaciers since 1850))。[127][128]南极洲和格陵兰的陆地冰帽自2002年以来一直在流失中,2009年起流失加速。[129]全球海平面由于海水受热热膨胀和冰融化,而一直上升。北极海冰在过去的几十年里,其面积和厚度的减少,进一步证明气候正快速变化中。[130]
America's Climate Choices: Panel on Advancing the Science of Climate Change; National Research Council. Advancing the Science of Climate Change. Washington, D.C.: The National Academies Press. 2010. ISBN 978-0-309-14588-6. (原始内容存档于2014-05-29). (p1) ... there is a strong, credible body of evidence, based on multiple lines of research, documenting that climate is changing and that these changes are in large part caused by human activities. While much remains to be learned, the core phenomenon, scientific questions, and hypotheses have been examined thoroughly and have stood firm in the face of serious scientific debate and careful evaluation of alternative explanations. (pp. 21–22) Some scientific conclusions or theories have been so thoroughly examined and tested, and supported by so many independent observations and results, that their likelihood of subsequently being found to be wrong is vanishingly small. Such conclusions and theories are then regarded as settled facts. This is the case for the conclusions that the Earth system is warming and that much of this warming is very likely due to human activities.
The United Nations Framework Convention on Climate Change. 1994-03-21 [2023-05-24]. (原始内容存档于2022-09-20). Climate change means a change of climate which is attributed directly or indirectly to human activity that alters the composition of the global atmosphere and which is in addition to natural climate variability observed over comparable time periods.
Vallis, Geoffrey K.; Farneti, Riccardo. Meridional energy transport in the coupled atmosphere–ocean system: scaling and numerical experiments. Quarterly Journal of the Royal Meteorological Society. October 2009, 135 (644): 1643–60. Bibcode:2009QJRMS.135.1643V. S2CID 122384001. doi:10.1002/qj.498.
Baldwin, M. P.; Gray, L. J.; Dunkerton, T. J.; Hamilton, K.; Haynes, P. H.; Randel, W. J.; Holton, J. R.; Alexander, M. J.; Hirota, I. The quasi-biennial oscillation. Reviews of Geophysics. 2001, 39 (2): 179–229. Bibcode:2001RvGeo..39..179B. S2CID 16727059. doi:10.1029/1999RG000073(英语).
Zachos, J.C.; Dickens, G.R. An assessment of the biogeochemical feedback response to the climatic and chemical perturbations of the LPTM. GFF. 2000, 122: 188–89. S2CID 129797785. doi:10.1080/11035890001221188.
Ribas, Ignasi. The Sun and stars as the primary energy input in planetary atmospheres. IAU Symposium 264 'Solar and Stellar Variability – Impact on Earth and Planets'. Proceedings of the International Astronomical Union 264. February 2010: 3–18. Bibcode:2010IAUS..264....3R. arXiv:0911.4872. doi:10.1017/S1743921309992298. 参数|journal=与模板{{cite conference}}不匹配(建议改用{{cite journal}}或|book-title=) (帮助)
Miles, M.G.; Grainger, R.G.; Highwood, E.J. The significance of volcanic eruption strength and frequency for climate. Quarterly Journal of the Royal Meteorological Society. 2004, 130 (602): 2361–76. Bibcode:2004QJRMS.130.2361M. S2CID 53005926. doi:10.1256/qj.03.60.
Graf, H.-F.; Feichter, J.; Langmann, B. Volcanic sulphur emissions: Estimates of source strength and its contribution to the global sulphate distribution. Journal of Geophysical Research: Atmospheres. 1997, 102 (D9): 10727–38. Bibcode:1997JGR...10210727G. doi:10.1029/96JD03265. hdl:21.11116/0000-0003-2CBB-A.
Bruckschen, Peter; Oesmanna, Susanne; Veizer, Ján. Isotope stratigraphy of the European Carboniferous: proxy signals for ocean chemistry, climate and tectonics. Chemical Geology. 1999-09-30, 161 (1–3): 127–63. Bibcode:1999ChGeo.161..127B. doi:10.1016/S0009-2541(99)00084-4.
Brugger, Julia; Feulner, Georg; Petri, Stefan, Severe environmental effects of Chicxulub impact imply key role in end-Cretaceous mass extinction, 19th EGU General Assembly, EGU2017, proceedings from the conference, 23–28 April 2017 19, Vienna, Austria: 17167, April 2017, Bibcode:2017EGUGA..1917167B.
Mahowald, Natalie; Albani, Samuel; Kok, Jasper F.; Engelstaeder, Sebastian; Scanza, Rachel; Ward, Daniel S.; Flanner, Mark G. The size distribution of desert dust aerosols and its impact on the Earth system. Aeolian Research. 2014-12-01, 15: 53–71. Bibcode:2014AeoRe..15...53M. ISSN 1875-9637. doi:10.1016/j.aeolia.2013.09.002.
Langdon, P.G.; Barber, K.E.; Lomas-Clarke, S.H.; Lomas-Clarke, S.H. Reconstructing climate and environmental change in northern England through chironomid and pollen analyses: evidence from Talkin Tarn, Cumbria. Journal of Paleolimnology. August 2004, 32 (2): 197–213. Bibcode:2004JPall..32..197L. S2CID 128561705. doi:10.1023/B:JOPL.0000029433.85764.a5.
Miyoshi, N; Fujiki, Toshiyuki; Morita, Yoshimune. Palynology of a 250-m core from Lake Biwa: a 430,000-year record of glacial–interglacial vegetation change in Japan. Review of Palaeobotany and Palynology. 1999, 104 (3–4): 267–83. doi:10.1016/S0034-6667(98)00058-X.
Ochoa-Hueso, R; Delgado-Baquerizo, N; King, PTA; Benham, M; Arca, V; Power, SA. Ecosystem type and resource quality are more important than global change drivers in regulating early stages of litter decomposition. Soil Biology and Biochemistry. 2019, 129: 144–52. S2CID 92606851. doi:10.1016/j.soilbio.2018.11.009.
Bachelet, D.; Neilson, R.; Lenihan, J. M.; Drapek, R.J. Climate Change Effects on Vegetation Distribution and Carbon Budget in the United States. Ecosystems. 2001, 4 (3): 164–85. S2CID 15526358. doi:10.1007/s10021-001-0002-7.
Shaftel, Holly (编). Climate Change: How do we know?. NASA Global Climate Change. Earth Science Communications Team at NASA's Jet Propulsion Laboratory. [2017-12-16]. (原始内容存档于2019-12-18).
Hawkins, Ed. Atmospheric temperature trends. Climate Lab Book. 2019-09-12. (原始内容存档于2019-09-12). (Higher-altitude cooling differences attributed to ozone depletion and greenhouse gas increases; spikes occurred with volcanic eruptions of 1982-83 (El Chichón) and 1991-92 (Pinatubo).)
Hawkins, Ed. From the familiar to the unknown. Climate Lab Book (professional blog). 2020-03-10. (原始内容存档于2020-04-23). (Direct link to image; Hawkins credits Berkeley Earth for data.) "The emergence of observed temperature changes over both land and ocean is clearest in tropical regions, in contrast to the regions of largest change which are in the northern extra-tropics. As an illustration, northern America has warmed more than tropical America, but the changes in the tropics are more apparent and have more clearly emerged from the range of historical variability. The year-to-year variations in the higher latitudes have made it harder to distinguish the long-term changes."
IPCC. The Core Writing Team; Pachauri, R.K.; Reisinger, A.R. , 编. Climate Change 2008: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Geneva, Switzerland: IPCC. 2008. ISBN 978-92-9169-122-7.[永久失效链接].