Loading AI tools
偏序集中,大(小)於或等於全體元素的特別元素 来自维基百科,自由的百科全书
数学分支序理论中,最大元是某集合中,大于或等于其全体元素的特殊元素。最小元与之对偶,小于等于该集合的任何元素。例如,实数集中,最大元是,而最小元是,但是区间并无最大元或最小元。
则称为的最大元(英语:greatest element)。对偶地,若的元素满足:
则称为的最小元(least element)。
由定义,的最大(小)元必定是的上(下)界。且若为偏序集,则集合至多得一个最大元:若和皆为最大,则由定义有,又有,由反对称性得。所以若有最大元,则必定唯一。[1]若改为预序集则不一定。
整个偏序集的最大最小元又称为顶(top)和底(bottom)。顶常以符号记作或,底则是或,在有补格和布尔代数等结构中尤为常见。有顶和底的偏序集称为有界偏序集合。
集合不一定有最大元,也不一定有上界。即使集合有上界和上确界,也不一定有最大元。举例,实数系中,任何正数皆是负数子集的上界,且为其上确界,但是没有最大元:不存在“最大的负数”。最小元与下界、下确界的关系也类似。最大元又与极大元(maximal element)不同:有极大元的集合不一定有最大元,但偏序集若有最大元,则同时亦是唯一的极大元。最小元与极小元(minimal element)亦不同。[1]
设为偏序集,为其子集。
假如限制到子集上为全序(如首段附图的),则在中,最大元与极大元等价:若为极大,则对任意其他,必有(将与极大矛盾),故是最大元。
所以,全序集中,最大元与极大元两个概念重合,有时也称为最大值(maximum),同理最小元与极小元也称为最小值(minimum)。但上述用法与实值函数论的用法略有出入。[2]研究实值函数时,所谓最大值是函数的值域的最大元,又称全域最大值、绝对最大值、最大值。[3]而限制到某点邻域时,对应值域的最大元(等同于极大元)则称为局域最大值、相对最大值、极大值。[4]最大最小值又合称最值,极值亦同。
集合的最大最小值分别记作。在格理论或概率论中,为方便运算,会将两数之最大最小值(即其组成二元集的最大最小元)简记作并和交。换言之:
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.