在物理学和数学中的向量分析中,亥姆霍兹定理,[1][2] 或称向量分析基本定理,[3][4][5][6][7][8][9] 指出对于任意足够光滑、快速衰减的三维向量场可分解为一个无旋向量场和一个螺线向量场的和,这个过程被称作亥姆霍兹分解。此定理以物理学家赫尔曼·冯·亥姆霍兹为名。[10]
这意味着任何矢量场 F,都可以视为两个势场(标势 φ 和矢势 A)之和。
假定 F 为定义在有界区域 V ⊆ R3 里的二次连续可微向量场,且 S 为 V 的包围面,则 F 可被分解成无旋度及无散度两部分:[11]
- ,
其中
如果 V = R3,且 F 在无穷远处消失的比 快,则标势及矢势的第二项为零,也就是说
[12]
(疑似有错误)
将F改写成傅里叶变换的形式:
标量场的傅里叶变换是一个标量场,向量场的傅里叶变换是一个维度相同的向量场。
现在考虑以下标量场及向量场:
所以
On Helmholtz's Theorem in Finite Regions. By Jean Bladel. Midwestern Universities Research Association, 1958.
Hermann von Helmholtz. Clarendon Press, 1906. By Leo Koenigsberger. p357
An Elementary Course in the Integral Calculus. By Daniel Alexander Murray. American Book Company, 1898. p8.
Electromagnetic theory, Volume 1. By Oliver Heaviside. "The Electrician" printing and publishing company, limited, 1893.
Elements of the differential calculus. By Wesley Stoker Barker Woolhouse. Weale, 1854.
An Elementary Treatise on the Integral Calculus: Founded on the Method of Rates Or Fluxions. By William Woolsey Johnson. John Wiley & Sons, 1881.
参见:流数法。
Vector Calculus: With Applications to Physics. By James Byrnie Shaw. D. Van Nostrand, 1922. p205.
参见:格林公式。
A Treatise on the Integral Calculus, Volume 2. By Joseph Edwards. Chelsea Publishing Company, 1922.
参见:
- H. Helmholtz (1858) "Über Integrale der hydrodynamischen Gleichungen, welcher der Wirbelbewegungen entsprechen" (页面存档备份,存于互联网档案馆) (On integrals of the hydrodynamic equations which correspond to vortex motions), Journal für die reine und angewandte Mathematik, 55: 25-55. On page 38, the components of the fluid's velocity (u, v, w) are expressed in terms of the gradient of a scalar potential P and the curl of a vector potential (L, M, N).
- However, Helmholtz was largely anticipated by George Stokes in his paper: G. G. Stokes (presented: 1849 ; published: 1856) "On the dynamical theory of diffraction," Transactions of the Cambridge Philosophical Society, vol. 9, part I, pages 1-62; see pages 9-10.
David J. Griffiths, Introduction to Electrodynamics, Prentice-Hall, 1999, p. 556.
- George B. Arfken and Hans J. Weber, Mathematical Methods for Physicists, 4th edition, Academic Press: San Diego (1995) pp. 92–93
- George B. Arfken and Hans J. Weber, Mathematical Methods for Physicists International Edition, 6th edition, Academic Press: San Diego (2005) pp. 95–101
- C. Amrouche, C. Bernardi, M. Dauge, and V. Girault. "Vector potentials in three dimensional non-smooth domains." Mathematical Methods in the Applied Sciences, 21, 823–864, 1998.
- R. Dautray and J.-L. Lions. Spectral Theory and Applications, volume 3 of Mathematical Analysis and Numerical Methods for Science and Technology. Springer-Verlag, 1990.
- V. Girault and P.A. Raviart. Finite Element Methods for Navier–Stokes Equations: Theory and Algorithms. Springer Series in Computational Mathematics. Springer-Verlag, 1986.