Loading AI tools
来自维基百科,自由的百科全书
数学中,一个辛矢量空间是带有辛形式 ω 的向量空间 V,所谓辛形式即一个非退化斜对称的双线性形式。
确切地说,一个辛形式是一个双线性形式 ω :V × V → R 满足:
取定一组基,ω 能表示为一个矩阵。以上两个条件表明这个矩阵必须是斜对称非奇异矩阵。这不同于下面将介绍的辛矩阵,辛矩阵表示空间的一个辛变换。
如果 V 是有限维的那么维数必须为偶数,因为每个奇数阶斜对称矩阵的行列式为 0。
非退化斜对称双线性形式和非退化“对称”双线性形式,比如欧几里得向量空间的内积,的表现非常不同。欧几里得内积 g,对任何非零向量 v,均有 g(v,v) > 0 成立;但是一个辛形式 ω 满足 ω(v,v) = 0 。
标准辛空间 R2n 带有由一个非奇异斜对称矩阵给出的辛形式 ω。典型地,ω 写成矩阵形式表为分块矩阵
这里 In 是 n × n 单位矩阵。用基向量表示
一个经过修改的正交化过程指出任何有限维辛向量空间都有这样一组基,经常称为达布基或辛基底。
有另外一种方式理解标准辛形式。因上面所使用的带有标准结构的模型空间 Rn 容易导致误会,我们用一个“匿名”空间替代之。设 V 是一个 n-维实向量空间,V∗ 为其对偶空间。现在考虑直和 W := V ⊕ V∗,带有如下形式:
选取 V 的任何一组基 (v1, …, vn) ,考虑其对偶基
我们能将基理解成在 W 中的向量。若记 xi = (vi, 0) 和 yi = (0, vi∗),将它们放在一块,组成了 W 一组完整的基,
这里定义的形式 可以证明具有本节最初的那些性质,换句话说,每一个辛结构都同构于一个形如V ⊕ V∗的形式。
对子空间V的选择不是唯一的,对V选择的过程称为极化. 给出了一个这样的同构的子空间称为一个拉格朗日子空间或简称拉氏子空间.
更加明确的说,给定一个拉氏子空间(如之前定义), 那么对基 的选择,通过性质决定了对应的一组对偶基.
每一个辛结构都同构于一个形如V ⊕ V∗的形式,(某个向量空间上的)每一个复结构都同构于一个形如V ⊕ V∗的形式。利用这些结构,一个n-维流形的切丛,看做一个2n-维流形,拥有一个殆复结构,并且一个n-维流形余切丛,看做一个2n-维流形,拥有一个辛结构:
拉格朗日子空间在复空间中的类似物是其实部构成的实子空间,这个实子空间的复化则是全空间W = V ⊕ J'V。
设 ω 是一个 n-维实向量空间 V 上的形式,ω ∈ Λ2(V)。那么 ω 非退化当且仅当 n 是偶数,且 ωn/2 = ω ∧ … ∧ ω 是一个体积形式。n-维向量空间 V 上的体积形式是(惟一) n-形式 e1∗ ∧ … ∧ en∗ 非零乘积,这里 ei 是 V 上的标准基。
对上一节定义的标准基,我们有
重排即
定义[1] ωn 或 (−1)n/2ωn 为标准体积形式。也许会有一个因子 n!,这取决于外形式定义的反对称化是否包含因子 n!。体积形式定义了辛向量空间 (V, ω) 的一个定向。
假设 和 是辛向量空间,那么线性映射 称为一个辛映射当且仅当拉回 保持辛形式,即 。拉回形式的定义为:
从而 f 是一个辛映射当且仅当
对 V 中所有 u 和 v 成立。特别的,辛映射保持体积形式,保定向,是同构。
如果 V = W,则一个辛映射称为 V 上的线性辛变换。特别的,在这种情形我们有:
从而线性变换 f 保持辛形式。所有辛变换的集合组成一个群,且是一个李群,称为辛群,记作 Sp(V) 或者 Sp(V,ω) 。辛变换的矩阵形式由辛矩阵给出。
设 W 是 V 的一个线性子空间,定义 W 的辛补(空间)为子空间:
辛补满足
和
但是,不像正交补, W⊥ ∩ W 不一定为 {0}。我们讨论四种情形:
对上面的标准向量空间 R2n,
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.