Loading AI tools
可重複使用的超重型運載火箭 来自维基百科,自由的百科全书
SpaceX星舰(英语:SpaceX Starship,亦译作“星舟”[1][2][3][4]),是由太空科技探索公司(SpaceX)开发的一种可完全复用的重型运载火箭,于2017年9月伊隆·马斯克首次公布。星舰投入使用后将取代猎鹰9号、猎鹰重型火箭以及龙飞船等载具,执行近地轨道、地球同步轨道上的任务。除了近地轨道,星舰在轨道上加注燃料后,也可以完成地月转移以及登陆火星的任务。[5]
用途 | 重型运载火箭 |
---|---|
制造者 | spaceX |
制造国家 | 美国 |
外型及质量参数 | |
高度 | 121.3 米、398 英尺 |
直径 | 9 米、29.5 英尺 |
级数 | spaceX超级重型、SpaceX星舰飞船 |
业载量 | |
至近地轨道有效载荷 | |
质量 | 150 吨、330,000 磅 |
体积 | 1,000 立方米、35,000 立方英尺 |
至地球同步转移轨道有效载荷 | |
质量 | 100 吨、220,000 磅 |
体积 | 1,000 立方米、35,000 立方英尺 |
至月球有效载荷 | |
质量 | 100 吨、220,000 磅 |
体积 | 1,000 立方米、35,000 立方英尺 |
至火星有效载荷 | |
质量 | 100 吨、220,000 磅 |
体积 | 1,000 立方米、35,000 立方英尺 |
发射历史 | |
发射场 | Starbase Launch Site、肯尼迪航天中心39A发射台 |
第一级 – 超重型推进器 | |
高度 | 71 米、232 英尺 |
发动机 | 猛禽发动机 (33) |
单发推力 | 7,590 吨力、74,500,000 牛顿、16,700,000 磅力 |
燃料 | 液氧、液态甲烷 |
第二级 – SpaceX星舰飞船 | |
高度 | 50 米、164 英尺 |
发动机 | 猛禽发动机 (3)、猛禽真空发动机 (3) |
单发推力 | 14,700,000 牛顿、1,500 吨力、3,300,000 磅力 |
燃料 | 液氧、液态甲烷 |
SpaceX在2012年左右开始研发火星殖民系统(MCT,即星舰前身),火箭使用的猛禽火箭发动机则在2016年开始测试。SpaceX在2018年3月开始制造BFR的首个火箭原型,随后伊隆·马斯克在一场发表会上宣布了BFR的后续计划。在发表会上马斯克重新命名了BFR,他将第一级助推器称为超级重型(Super Heavy)[6],将第二级飞船称为星舰(Starship)。SpaceX同时表示其最初期望是在2022年发射载货版星舰去火星,然后在2024年执行载人计划。[7]计划中包含了可重复使用的运载火箭以及用于支持火箭快速发射、复用的地面基础设施,SpaceX还会研发可以在近地轨道进行在轨加注燃料的技术。作为超重型运载火箭,星舰的近地轨道运力可高达150公吨(150长吨)。
这一概念名称的演变顺序为:重型运载火箭概念(BFR)2005年→火星殖民运输器(MCT)2013年→行星际运输系统(ITS)2016年→大猎鹰火箭(BFR)2017年→星舰(Starship)2018年
如今,SpaceX正在采用不锈钢来建造用于测试的一系列星舰原型,因为不锈钢的廉价与加工的便捷性,原型的建造变得十分迅速。SpaceX希望为原型搭建专门的生产流水线,这使得SpaceX可以在更高的频率下进行火箭测试并快速地从中发现问题,随后SpaceX就可以针对该问题迅速地做出改进。
此条目需要更新。 (2024年10月29日) |
早在2005年,SpaceX就将“BFR”作为计划中超重型火箭的名称,并称“BFR”的性能会“远远地超过Falcon系列火箭”。[8][9]其目标为100吨(220,000磅)轨道运力。从2013年年中开始,SpaceX将整个任务和火箭统称为火星殖民运输器。[10]当2016年9月12米直径设计亮相时,SpaceX就将整个系统称为行星际运输系统(ITS),并将运载火箭本身称为ITS运载火箭。
2017年9月,SpaceX公布了9米直径的新设计,该火箭改名为“BFR”。[11][12][13]伊隆·马斯克在发布会上说“我们正在寻找正式的名称,但代称目前是BFR。”[14]SpaceX总裁格温·肖特威尔随后表示BFR的全称是“Big Falcon Rocket”。[15]
然而,伊隆·马斯克过去曾解释说,关于BFR的命名,他是从游戏《毁灭战士》中的BFG武器中汲取的灵感。[16]因为BFG武器在《毁灭战士3》中的名称是Big Fucking Gun,所以BFR偶尔也被媒体称为“Big Fucking Rocket”。
火箭的第二级是一艘可独立飞行的宇宙飞船,2017 - 2018年间,第二级被称为“BFS”(Big Falcon Ship)。在一场发布会上,第二级宇宙飞船改名为“星舰(Starship)”,第一级助推器被命名为“超级重型(Superheavy)”,而整个火箭的名字也为“星舰”。[17][18][19]
此条目需要更新。 (2024年10月29日) |
早在2007年,伊隆·马斯克就表示他个人的目标就是最终能让人类得以探索并殖民火星[20][21] 。关于登陆火星的计划架构在2011到2015年间被陆续揭露开来,其中一份2014年的声明表示最初的殖民者到达火星的时间不会早于2025年[22] ,时至2016年年中,此项计划仍然把这一日期定为不早于2025年。
2011年,马斯克在一次采访中表示他希望在10~20年内把人类送上火星[21]。 2012下半年,他表示他设想了一个人口达数万人的火星殖民地,而其中的殖民者到达火星的时间不早于2025年[22][23][24]。
2012年3月份,新闻报道声称猛禽火箭发动机上面级已经开始研发,但当时SpaceX没有公布任何细节。[25]
2012年10月,马斯克构思了一个高层面上的有关建造第二套运载能力远超猎鹰九号与猎鹰重型的可重复使用火箭系统的计划,而SpaceX已经在原先的系统上花费了数十亿美元[26]。这款新运载火箭将会是对猎鹰九号火箭作出的一次“演进”,而且将会大许多。但马斯克表示在2013年前SpaceX不会公开发表这项计划[22][27]。
2013年6月,马斯克表示他打算在“火星殖民运输器”定期飞行之前推迟对SpaceX的首次公开募股。[10][28]
2014年8月,有媒体消息人士推测,SpaceX超重型运载火箭的最早试飞最早可能会在2020年进行,以便在太空轨道飞行条件下对发动机进行全面测试。[29][30]
2015年初,马斯克表示他希望在2015年底发布有关火星殖民运输系统“全新架构”的细节。马斯克的这些计划最终因为一次SpaceX的发射意外被推迟,[30][30][31][32][33]而SpaceX公司直到2015年十二月下旬才恢复发射[34]。
2016年9月,马斯克公布了一项SpaceX的设计概念,该概念为一款直径12米(39英尺)的大型运输火箭:ITS运载火箭。ITS运载火箭将会专门用于行星际运输。[35][34]同时马斯克还讨论了SpaceX火星运输任务的整体细节。这其中包括ITS运载火箭的一部分数据(核心直径,火箭结构材料,发动机的数量和类型,推力,货物和乘客有效载荷能力),在轨推进剂 - 油轮补充装置,运输所需的大概时间和火星侧与地球侧基础设施的一部分。为了完成火星运输任务,SpaceX需要建造一组共三架飞行器。
构成2016 ITS运载火箭概念的三种不同的火箭是:[14][36]
该演讲也提出了更大的愿景,希望其他感兴趣的各方(无论是公司,个人还是政府)能够利用SpaceX所希望建立的,新的,成本低得多的运输基础设施,以便在火星上实现可持续的人类文明。[34][37][38]
2017年7月,马斯克表示ITS的设计已经“改进了很多”。改进后的设计使该系统对大量的地球轨道和顺式发射更为有利,这样系统可以通过近地空间区域的航天经济活动来收回成本。[39]
2017年9月,在国际宇航大会第68届大会上,SpaceX公布了最新的火箭设计。马斯克在大会上说:“我们正在寻找正式的名称,但目前代称是BFR。”[14],采用甲烷分级燃烧火箭发动机技术,最初会用于地球轨道和地月飞行环境,将来也可用于飞往火星的任务。[40][11]
SpaceX于2017年修订的设计是一种直径为9米(30英尺)的碳复合材料技术火箭,它的后端包括一个小三角翼,其中一个是用于控制俯仰和滚转的分瓣。其三角翼和分裂襟翼能够扩大飞行包线,以使飞船能够在各种大气密度(无,薄或重的大气层)中降落,并可供各种有效载荷(小型,重型或无载荷)放置在飞船的鼻锥里。[41][42]该火箭的第二级有三种版本:BFS货运,BFS油轮和BFS载人。货物版本将用于发射卫星到低地球轨道 - 提供“比以前更为量大的撒土豆行为”[41] - 还能运输货物到达月球和火星。在高椭圆形地球轨道上重新加油后,宇宙飞船的设计将使其能够一次性登陆月球并返回地球而无需再次加油。[40][42]
此外,BFR系统在理论上被证明能够以快速地对地的方式运载乘客或货物,并在90分钟内将其有效载荷运送到地球上的任何地方。[41]
截至2017年9月,猛禽火箭发动机已经过42次主发动机测试,共计有1200秒的测试点火时间。测试发动机在 20MPa(200bar; 2,900psi)压力下运行,而飞行发动机的室压目标则是25 MPa(250 bar; 3,600 psi),SpaceX预计在后续迭代中让发动机达到30 MPa的室压(300 bar; 4,400 psi)。[42]
2017年11月,SpaceX总裁兼首席运营官Gwynne Shotwell表示,大约一半的BFR开发工作都集中在猛禽火箭发动机上。[43]
2017年SpaceX的目标是在2022年将前两个货运载荷送到火星,[40]这两个货运载荷的目标是“确认水资源并识别危险”,同时为未来的航班安装“电力,采矿和生命支持基础设施”。其次是2024年的四艘船,包括两艘载有人员的BFR航天器与两艘装有货物的船,两艘货运飞船将带去额外的设备和用品,其目的是在火星建立推进剂生产厂。[42]
到2018年初,SpaceX已在洛杉矶港开始建造一座新的永久性生产设施,用于制造其直径9米的碳纤维复合材料箭体。2018年3月,第一艘船的制造工作正在港口的一个临时设施中进行,[44]而第一次亚轨道试飞计划将不早于2019年。[44][45]该公司继续公开表明其最初的理想目标是在2022年就能执行BFR去往火星的载货任务,随后是2024年飞往火星的首次载人任务,[44][11]这符合2017年末提到的时间表。
早在2015年,SpaceX就一直在寻找制造设施的地点,以供建造大型火箭,并在加利福尼亚州,德克萨斯州,路易斯安那州,[46]和佛罗里达州进行实地调查。[47]截至2017年9月,SpaceX已经开始制造运载火箭的部件。“我们已经订购了用来制作储料罐的工具,该设施正在建设中,我们将在2018年第二季度开始建造第一个原型。”[42]
在2018年3月,SpaceX宣布将在2018 - 2019年在洛杉矶港海滨大道建造的新工厂生产下一代9米直径(30英尺)的运载火箭和航天器。SpaceX租用了18英亩的土地10年,可以进行多次更新,并将利用该场地来制造箭体,在海上着陆后复查箭体,以及对助推器和宇宙飞船进行翻新。[47][48][49]新工厂分别在2018年4月和5月份由海港事务委员会[39]与洛杉矶市议会通过最终监管批准。[50]那时,大约已有40名SpaceX员工正在设计和建造BFR。[46]随着时间的推移,该项目预计将有700个技术职位。[47]洛杉矶的临时设施是一个203500平方英尺(18910平方米)的建筑物,大约有105英尺(32米)高。[51]完全组装的运载火箭预计将通过驳船运输,通过巴拿马运河,运往佛罗里达州的卡纳维拉尔角进行发射。[46]
2018年8月,美国军方首次公开讨论了使用BFR的兴趣。美国空军空中机动司令部负责人,对BFR在30分钟内点对点地将150吨载荷投放到世界上任何一个地方的能力十分感兴趣。他们预计这类大型运输能力“可能在未来五到十年内拥有”。[52][53]
在2018年9月宣布的2023年月球环游任务计划中 - 一架名为#dearMoon[54]私人环游任务的星舰展示了第二级和星舰的新设计概念,其中有三个后鳍和两个前鸭鳍,用于大气进入,取代了在一年前显示的三角翼和分裂襟翼设计。修订后的BFR设计在第二级使用了七个相同尺寸的猛禽发动机;与第一级使用的发动机型号相同。第二级设计在船头附近有两个小的驱动式鸭鳍,在底部有三个大鳍,其中两个将启动,所有三个都用作着陆腿。[55]此外,SpaceX还在本月下半月表示他们“不再计划为Falcon 9升级可重复使用的第二级”。[56]BFR运载火箭的两个主要部分在11月份被赋予描述性名称:第二级/上面级的Starship和第一级/助推级的“Super Heavy”,马斯克指出“建造Super Heavy是为了远离地球的深重力井”(在其他行星或卫星可以不用第一级。)“[17]
此条目需要更新。 (2024年10月29日) |
2018年12月,在开始建造第一个碳复合材料测试部件九个月后,马斯克宣布将采取“违反直觉的新设计思路”:SpaceX主要用于制造火箭结构和推进剂罐的材料将是“相当重的……但非常坚固”的金属。[57][58][59]这随后被证明是不锈钢。
继马斯克个人去到博卡奇卡的SpaceX南得克萨斯州发射场后,马斯克便透露,第一个星舰试验品“星斗”已经建造了几个星期。正如先前所想,星斗将由300系列不锈钢而非碳复合材料制成。根据马斯克的说法,使用不锈钢的原因是“不锈钢明显便宜,而且建造起来很快。它并不是最轻的,但它实际上是最轻的。如果你看一下高品质的属性不锈钢,不明显的是,在低温下,不锈钢的强度提高了50%。”[60]300系列不锈钢的高熔点仍然意味着星舰的背风侧在重返大气层时不需要绝缘陶瓦,而更热的迎风面将可以使用比其他材料更少的绝缘陶瓦以隔绝热量。
星斗将用于火箭原型测试与开发着陆/低空/低速控制算法。测试火箭只会安装三台猛禽火箭发动机,飞行高度不超过5公里,预计最初飞行时间不会早于2019年上半年。[61][62]
到2019年3月,SpaceX已经取消了他们从Ascent Aerospace购买的数百万美元的碳复合材料生产工具,放弃了所有在洛杉矶港的生产计划,并关闭了复合材料制造厂。[63]
Super Heavy原型建造原本计划在2019年第二季度之前开始。第一批建造的Super Heavy助推器的发动机会少于全尺寸型的28台猛禽火箭发动机,这仅仅是因为早期试飞不需要那么多发动机,而且此举会减少在早期试飞中发生助推器故障时SpaceX的损失。[64]
SpaceX下一代运载火箭设计结合了几种元素,根据马斯克的说法,这些元素将使长时间超越地球轨道(BEO)的太空飞行成为可能。SpaceX预测该设计可以降低发射成本。它还将服务于传统近地轨道市场的所有可用任务。这使SpaceX将其大部分开发资源集中在下一代运载火箭上。[42][65][66][40]
完全可重复使用的超重型运载火箭将由两个主要部分组成:一个可重复使用的助推器级,名为Super Heavy,以及一个可重复使用的第二级,带有一个集成的有效载荷部分,名为Starship。[17][42]
将运载火箭的第二级与长时间宇宙飞船相结合将是一种独特的太空任务结构。这种架构取决于轨道加油的成功与否。[40]
运载火箭的主要特征包括:[67][34][40][68][69]
Super Heavy(超级重型)[18] 是SpaceX下一代运载火箭的第一级助推器,高71米(230英尺),直径9米(30英尺),预计总升空质量为3,530,000公斤(7,780,000磅)[67]它由不锈钢罐和支撑结构构成,使用 过冷液态甲烷和液氧(CH 4 / LOX)推进剂,由29个猛禽火箭发动机,其中内环9个猛禽发动机可改变推力方向。版本二于2022年底提升猛禽发动机数量至33个,其中内环13个猛禽发动机具有矢量控制,33具发动机总共提供75.9 MN(17,000,000 lbf)起飞推力。[67],推重比接近1.5。[71]根据FAA有关星舰环境调查报告,超级重型最多可安装猛禽发动机数量为37个。截至2022年2月,马斯克表示超级重型在不改变直径前提最多可以安装33具二代猛禽发动机,而超级重型预计能够在30分钟内完成补充燃料。
它拥有4个无法收缩的栅格翼但没有任何降落腿。[72]在后续建造的助推器,将进一步减少至3/2格栅翼。 未来星舰(BS925及以后)将会转变为热分级模式,超级重型助推器将会新增排气口,在超级重型助推器发动机以剩余的3具中央发动机以50%推力运作时,启动上级星舰的发动机并进行分级,以便获得额外10%的有效有效载荷性能。[73][74]
原型助推器目前不能进行回收,只能使用水上软着陆避免爆炸,但在后续原型(最早B9)将会改为由发射塔以筷子/机械臂(Chopsticks/Mechazilla)进行空中捕捉[75][76][77][78]。
星舰[18][17]是一种可重复使用的航天器,也可作为运载火箭第二级,具有集成的有效载荷部分。星舰至少会有以下变种:[79]
目前星舰原型舰使用一次性降落脚进行测试,以减低测试失败所造成的损失,及原型舰暂时不适合重用。
星舰将使用6个可伸缩降落腿进行回收,但根据马斯克最新计划,现在将会改为由地面捕捉塔以支架捕捉爪进行堆叠及空中捕捉。
按照2022年2月10日SpaceX星舰简报会[86],计划每三天生产一艘星舰。
在后续星舰,将会调整前襟翼更接近星舰的背面。更有可能会移除前襟翼以进一步减少重量,提升质量比。同时,星舰将会较现时设计增高约十米及采用六具真空猛禽发动机。[87] [88]
另外,现时星舰于分级时,超级重型助推器会大幅度摆离上级星舰,以便让星舰进行分级。然而于2023年6月24日,马斯克表示星舰将会转变为热分级模式,超级重型助推器将会新增排气口,在发动机尚未关闭前,启动上级星舰的发动机并进行分级,以便获得额外10%的有效有效载荷性能,并预计将于6星期内完成升级。[89][90]
飞行序列. | 时间(UTC) | 原型 | 发射地点 | 试飞高度 | 结果 | 升空持续时间 |
---|---|---|---|---|---|---|
1 | 2019年4月5日 | 星虫 | 德州博卡奇卡 | ~ 1米(3英尺) | 成功 | |
此次试飞为系留限制试飞,使用的是单个猛禽发动机(SN 2)。 | ||||||
2 | 2019年7月25日[91] | 星虫 | 德州博卡奇卡 | 18米(59英尺) | 成功 | ~ 22 秒 |
此次试飞是第一次无限制试飞,使用单个猛禽发动机(SN 6)。 | ||||||
3 | 2019年8月27日 22:00[92] |
星虫 | 德州博卡奇卡 | 150米(490英尺) | 成功 | ~ 57 秒[93] |
此次试飞使用单架猛禽发动机(SN 6)。SpaceX在试飞直播中称其为“150米星虫测试”。此次发射后,星虫退役了,其中一些零件可重复用于其他测试。[94]此次发射获得了《太空新闻》奖“2019年度突破者之选”。[95] |
从2017年10月开始,BFR概念揭幕后的一个月,就有爱好者猜测火箭的飞行试验将从星舰的亚轨道跳跃开始,[69]而初步的飞行测试最早会在2019年开始。[96]到了2018年9月,第二级星舰的跳跃将在德克萨斯州布朗斯维尔附近的SpaceX南德克萨斯发射场进行。[67]SpaceX于2018年11月向美国联邦通信委员会申请了一项实验无线电通信许可证[97],向美国联邦航空局申请了一项试验性许可证[98],以支持试飞计划,从许可上看,所有试飞都将保持在海拔5公里(16,000英尺)以下。[62]测试载具星舰和测试地点德克萨斯发射场都将在2018年底开始建造。[61]
用于第一次试飞的星虫的主要结构,即是用于低空测试的星舰的缩减版本,它于2019年1月10日建造完成。[99]1月的晚些时候,星虫遭遇了大风,大风损坏了鼻锥结构,而水塔结构和火箭支腿则保持了完整。[100][101][102]随后SpaceX表示他们不会再做一个鼻锥,因为低速飞行测试不会用到鼻锥。[103]
星舰不会是一次定型的火箭,SpaceX计划用一系列的原型测试来逐步改进星舰,最终到达设计目标,这一源于互联网开发思维的做法,被称为“快速迭代”。因此,用于测试的“测试机”将会多达几十多个,它们中的大多数将在各种各样的测试中损毁,这在火箭开发上是史无前例的。
目前星舰上级的地面测试及已终止的亚轨道飞行测试现透过使用位于梅西地面测试场(Massey's Test Site)进行,原有的静态点火测试台A(原为亚轨道测试台A)及静态点火测试台B(原为亚轨道测试台B)则分别于2023年12月中及2024年5月中拆卸。
下表是星舰原型机的测试记录,更详细及已退役/摧毁星舰测试记录请见SpaceX星舰研发历史
在下表中:
“Mk”是 Mark(号)的缩写,现已停止使用
“SN”是 Serial Number(序列号)的缩写,现已停止使用
“S”是 Starship(星舰)的缩写
低温加压测试(Cryogenic Proof Test)是透过加注液态液态氮或液态氧来测试箭体耐压性。
燃料加注测试(Propellent Load Test)是透过加注液态甲烷及液态氧来测试箭体在使用燃料下的耐压性。
湿式演练(Wet Dress Rehearsal, WDR)是透过加注液态甲烷及液态氧气并模拟完整发射流程至发射前一秒。
涡轮启动测试(Spin Prime Test)是透过注入少量燃料来推动发动机涡轮,不会进行燃烧及产生推力。
点燃器测试(Ignitor Test)是测试发动机内的点燃器,不需要使用燃料进行。
静态点火测试(Static Fire Test)是启动发动机并产生推力,一般维持数秒至20秒不等。
高仓(High Bay)及巨仓(Mega Bay)是用作建造及检修星舰和超级重型助推器的航天器装配大楼。
* 地面测试机
原型 | 建造开始时间 | 现状 | 退役/废弃/被摧毁时间 | 建造地点 | 备注 |
---|---|---|---|---|---|
测试燃料箱TT1 | 2020年1月 | 彻底损坏 | 2020年1月 | 德州博卡奇卡 | 已损坏并报废 |
头锥测试燃料箱LOX HTT | 2020年1月 | 退役并拆除 | 2020年1月 | 德州博卡奇卡 | 成功进行数小时加压测试后退役 |
测试燃料箱TT2 | 2020年1月 | 彻底损坏 | 2020年1月29日 | 德州博卡奇卡 | 已损坏并报废 |
星舰SN2 | 2020年2月 | 退役 | 2020年3月 | 德州博卡奇卡 | 在加压测试后退役;现为建造基地储水罐 |
星舰SN7 | 2020年5月 | 彻底损坏 | 2020年6月23日 | 德州博卡奇卡 | 已损坏并报废 |
星舰SN7.1 | 2020年7月 | 彻底损坏 | 2020年9月23日 | 德州博卡奇卡 | 已损坏并报废 |
星舰SN7.2 | 2020年12月 | 退役并拆除 | 2021年2月4日 | 德州博卡奇卡 | 完成低温加压测试,现被拆除 |
星舰-24.2/Ship-24.2 | 2021年10月 | 测试中 | 不适用 | 德州博卡奇卡 | 星链有效载荷测试储罐,将进行测试 |
星舰-26.1/Ship-26.1 | 2022年9月 | 彻底损坏 | 2023年5月26日 | 德州博卡奇卡 | 于压力测试中摧毁;用于测试星舰后舱段结构及超级重型助推器热分级环 |
压力测试鼻锥 | 2021年3月 | 退役并拆除 | 2021年5月11日 | 德州博卡奇卡 | 完成压力测试,现被拆除 |
EDOME测试储罐 | 2022年6月 | 彻底损坏 | 2022年10月底 | 德州博卡奇卡 | 转移至梅西储罐测试场,于第二次低温加压测试中彻底损坏[104] |
TT16 | 2024年中 | 测试中 | 不适用 | 德州博卡奇卡 | 转移至梅西储罐测试场,将用作测试星舰第二代推力圆盘 |
* 亚轨道飞行测试机
原型 | 建造开始时间 | 现状 | 退役/废弃/被摧毁时间 | 最高试飞高度 | 建造地点 | 备注 |
---|---|---|---|---|---|---|
星舰Mk1 | 2018年12月 | 鼻锥损坏 | 2019年11月 | 从未飞行 | 德州博卡奇卡 | 储罐结构无法承受压力破裂而报废 |
星舰Mk2 | 2018年12月 – 2019年5月(估计) | 废弃 | 2019年11月 | 从未飞行 | 佛罗里达州可可海岸 | 停止建造并被报废 |
星舰SN1 | 2019年10月(估计) | 彻底损坏 | 2020年3月 | 从未飞行 | 德州博卡奇卡 | 发动机圆盘无法承受储罐重量,导致储罐破裂而报废 |
星舰MK4 | 2019年9月(估计) | 废弃 | 2019年11月 | 从未飞行 | 佛罗里达州可可海岸 | 停止建造并被报废 |
星舰SN3 | 2020年3月 | 彻底损坏 | 2020年4月 | 从未飞行 | 德州博卡奇卡 | 人为失误导致液氧储罐倒塌而报废 |
星舰SN4 | 2020年3月 | 彻底损坏 | 2020年5月 | 从未飞行 | 德州博卡奇卡 | 于静态点火测试后,因燃料泄漏而爆炸摧毁 [105] |
星舰SN5 | 2020年4月 | 退役并拆除 | 2021年1月 | 150m
|
德州博卡奇卡 | 成功150m飞行,现被拆除 |
星舰SN6 | 2020年4月 | 退役并拆除 | 2021年1月 | 150m
|
德州博卡奇卡 | 成功150m飞行,现被拆除 |
星舰SN8 | 2020年7月 | 彻底损坏 | 2020年12月10日 | 12.5km
|
德州博卡奇卡 | 12.5km飞行测试中,降落失败而坠毁 |
星舰SN9 | 2020年8月 | 彻底损坏 | 2021年2月3日 | 10km
|
德州博卡奇卡 | 10km飞行测试中,降落失败而坠毁 |
星舰SN10 | 2020年9月 | 彻底损坏 | 2021年3月3日 | 10km
|
德州博卡奇卡 | 成功10km飞行,但降落后8分钟爆炸损毁 |
星舰SN11 | 2020年9月 | 彻底损坏 | 2021年3月30日 | 10km
|
德州博卡奇卡 | 10km飞行测试降落阶段爆炸解体 |
星舰SN12 | 2020年10月 | 报废 | 2021年1月 | 从未飞行 (报废) |
德州博卡奇卡 | 已拆解,鼻锥改装为压力测试鼻锥 |
星舰SN13 | 2020年10月 | 报废 | 2021年1月 | 从未飞行 (报废) |
德州博卡奇卡 | 停止建造并被报废,工作重心转向SN15+ |
星舰SN14 | 2020年10月 | 报废 | 2021年1月 | 从未飞行 (报废) |
德州博卡奇卡 | 停止建造并被报废,工作重心转向SN15+ |
星舰SN15 | 2020年11月 | 退役并拆除 | 2021年5月26日 | 10km
|
德州博卡奇卡 | 完成10km飞行测试,并在一具发动机失效及储罐失压下成功降落。在展示超过两年后于2023年7月26日被拆除。 |
星舰SN16 | 2020年12月 | 退役并拆除 | 2021年6月 | 从未飞行 (退役) |
德州博卡奇卡 | 为加快星舰轨道飞行测试进度,SN16取消其测试并于稍后拆除。 |
星舰SN17 | 2020年12月 | 报废 | 2021年5月 | 从未飞行 (报废) |
德州博卡奇卡 | 报废,其鼻锥则用作有效载荷舱舱门测试。 |
星舰SN18 | 2021年1月 | 报废 | 2021年3月 | 从未飞行 (报废) |
德州博卡奇卡 | 停止建造并被报废,工作重心转向SN20+ |
星舰SN19 | 2021年2月 | 报废 | 2021年3月 | 从未飞行 (报废) |
德州博卡奇卡 | 停止建造并被报废,工作重心转向SN20+ |
* 轨道飞行测试机(第一代)
原型 | 建造开始时间 | 现状 | 退役/废弃/被摧毁时间 | 最高试飞高度 | 建造地点 | 备注 |
---|---|---|---|---|---|---|
星舰-20/Ship-20 | 2021年3月 | 退役 | 2021年5月11日 | 从未飞行 (退役) |
德州博卡奇卡 | 完成地面测试后退役,现停放于展示区; |
星舰-21/Ship-21 | 2021年6月 | 报废 | 2022年4月15日 | 从未飞行 (报废) |
德州博卡奇卡 | 停止组装并被报废,工作重心转向S24+ |
星舰-22/Ship-22 | 2021年9月 | 报废 | 2022年2月20日 | 从未飞行 (报废) |
德州博卡奇卡 | 完成组装后退役,现已于高仓拆解。 |
星舰-23/Ship-23 | 2021年10月 | 报废 | 2022年1月 | 从未飞行 (报废) |
德州博卡奇卡 | 停止组装并被报废,工作重心转向S24+ |
星舰-24/Ship-24 | 2021年10月 | 触发FTS解体 | 2023年4月20日 | 约39公里 | 德州博卡奇卡 | 于发射阶段触发飞行终止系统并摧毁,SpaceX判定此次测试为成功 |
星舰-25/Ship-25 | 2022年2月 | 触发FTS解体 | 2023年11月18日 | 约148公里 | 德州博卡奇卡 | 于入轨推进最后阶段触发飞行终止系统并摧毁,SpaceX判定此次测试为成功 |
星舰-26/Ship-26 | 2022年5月 | 退役 | 2024年8月 | 从未飞行 | 德州博卡奇卡 | 完成第二次静态点火后,于高仓2中拆除了猛禽发动机,现放置在火箭花园中[106] |
星舰-27/Ship-27 | 2022年6月 | 损坏并拆除 | 2023年7月20日 | 从未飞行 | 德州博卡奇卡 | 完成组装后存放,存放期间罐体发生内爆而拆解报废 |
星舰-28/Ship-28 | 2022年7月 | 计划外解体 | 2024年3月14日 | 约234公里 | 德州博卡奇卡 | 重返大气层时失联并摧毁,SpaceX判定此次测试为成功 |
星舰-29/Ship-29 | 2022年7月 | 溅落并沉没 | 2024年6月6日 | 约213公里 | 德州博卡奇卡 | 执行翻转机动后成功进行着陆点火并按计划沉没于印度洋中,SpaceX判定此次测试为成功 |
星舰-30/Ship-30 | 2022年9月 | 溅落并沉没 | 2024年10月13日 | 约212公里 | 德州博卡奇卡 | 执行翻转机动后成功进行着陆点火并按计划于预定位置沉没于印度洋中 |
星舰-31/Ship-31 | 2023年7月 | 飞行前整修中 | 不适用 | 预备 (轨道飞行) |
德州博卡奇卡 | 完成一次静态点火测试 |
星舰-32/Ship-32 | 2023年7月 | 等待测试 | 不适用 | 预备 (轨道飞行) |
德州博卡奇卡 | 最后一架第一代星舰,现停放于停泊区 |
* 轨道飞行测试机(第二代)
有关已退役或摧毁的测试储罐TT1、TT2、LOX HTT、最大动压测试鼻锥、SN7、SN7.1、SN7.2、GSE4及星舰MK1、MK2、MK4、SN1-6、SN8-11、SN12-14、SN15、SN16、SN17-19、S20-S29的建造及测试记录,及现役的S30-S34请参阅SpaceX星舰研发历史
有关S24轨道试飞任务请参见SpaceX星舰轨道试飞任务。
有关S25轨道试飞任务请参见SpaceX第二次星舰轨道试飞任务
有关S28轨道试飞任务请参见SpaceX第三次星舰轨道试飞任务
有关S29轨道试飞任务请参见SpaceX第四次星舰轨道试飞任务
有关S30轨道试飞任务请参见SpaceX第五次星舰轨道试飞任务
有关星舰飞行记录请参阅星舰任务列表。
更详细及已退役或摧毁或报废超级重型助推器测试记录请见SpaceX星舰研发历史
"BN"是 Booster Number(助推器序号)的缩写;现仅用于地面测试储罐。 "B"是 Booster (助推器-)的缩写;现用于轨道飞行机及地面测试储罐
* 地面测试机
原型 | 建造开始时间 | 现状 | 退役/废弃/被摧毁时间 | 最高试飞高度 | 建造地点 | 备注 |
---|---|---|---|---|---|---|
BN1 | 2020年9月 | 退役拆解 | 2021年4月13日
|
从未飞行 | 德州博卡奇卡 | 试制全尺寸模型机。已退役,高仓中拆解。 |
BN2 | 2021年1月 | 2021年6月24日
|
压力测试储罐。完成两次压力测试后改装为储水罐,但于2023年6月被拆除。 | |||
B2.1 | 2021年10月 | 2021年10月
|
测试储罐;完成一次负重模拟测试后退役拆解。 | |||
BN3 | 2021年3月 | 2021年8月14日
|
地面测试机。完成测试后退役;测试台A上拆除。 | |||
BN6 | 2021年3月 | 报废 | 2023年5月15日
|
测试储罐。在装满水的状态下进行飞行中止系统测试并摧毁 | ||
B7.1 | 2022年3月22日 | 退役 | 不适用 | 最大动压测试储罐。测试7次低温加压测试后退役。 | ||
B14.1 | 不适用 | 退役 | 不适用 | 测试储罐。曾置于轨道发射台上和筷子进行夹取测试[110],目前运返高仓。[111] | ||
EDOME | 2022年5月(估计) | 报废 | 2022年9月30日
|
穹顶结构测试储罐。转移至"Massey's Test Site";低温测试中计划性摧毁。 |
* 轨道飞行测试机
原型 | 建造开始时间 | 现状 | 退役/废弃/被摧毁时间 | 最高试飞高度 | 建造地点 | 备注 |
---|---|---|---|---|---|---|
B4 | 2021年5月 | 退役拆解 | 2022年6月30日
|
不适用 | 德州博卡奇卡 | 原首架轨道助推器。停放超过一年半后于2024年3月22日拆解 |
B5 | 2021年7月 | 2021年12月8日
|
原第二架轨道助推器。完工后退役,现已报废拆解。 | |||
B6 | 2021年8月 | 停止建造 | 2021年12月9日
|
原第三架轨道助推器。停止建造后运往展示区,重心转向改良版助推器。 | ||
B7 | 2021年10月 | 触发FTS解体 | 2023年4月20日
|
海拔39公里 | 首架轨道助推器;成功发射;因发动机矢量液压系统失效导致姿态失控,最终在发射后4分钟终止任务并于空中解体。 | |
B8 | 2021年9月 | 退役拆解 | 2023年1月19日
|
不适用 | 组装完成后因迭代而退役;现已报废拆解。 | |
B9 | 2021年10月 | 计划外解体 | 2023年11月18日
|
海拔90公里 | 第二架轨道助推器。顺利进行分级,于反推期间发生异常,最终终止任务并于空中解体 | |
B10 | 2022年7月 | 计划外解体 | 2024年3月14日
|
海拔106公里 | 第三架轨道助推器。顺利进行分级及反推,于降落时大部分发动机未能启动并失控高速溅落海面 | |
B11 | 2023年3月 | 溅落并沉没 | 2024年6月6日
|
海拔109公里 | 第四架轨道助推器。降落时成功启动大部分发动机进行着陆点火,悬停数秒后溅落,按计划沉没于墨西哥湾。目前B11的部分残骸已被打捞 | |
B12 | 2023年5月 | 退役 | 2024年10月28日 | 海拔96公里 | 第五架轨道助推器,降落时启动所有发动机,完成了机械臂捕捉测试,随后被运往巨仓进行了检查。现被放置在火箭花园[112] | |
B13 | 2023年8月 | 测试中 | 不适用 | 轨道级飞行测试 | 完成静态点火测试,现置于轨道发射台A | |
B14 | 2024年2月 | 组装中 | 不适用 | 轨道级飞行测试 | 第八架轨道助推器,1号巨仓内组装中 | |
B15 | 2024年7月 | 组装中 | 不适用 | 轨道级飞行测试 | 组装中,着陆储罐添加了数个小储罐作为补丁[113] | |
B16 | 约2024年10月 | 组装中 | 不适用 | 轨道级飞行测试 | 组装中,在星工厂附近发现了其部件[114] |
为了配合星舰及超重型推进器的降落,SpaceX曾尝试改建两个钻油台为可移动发射及降落海上平台,并分别命名为火星两个卫星的名称福波斯(Phobos)及得摩斯(Deimos),但为了集中于研究星舰的飞行性能及钻油台改装未如理想,目前两个钻油台已被SpaceX售出。
飞行次序 | 发射时间(UTC) | 轨道 | 原型序号 | 现状 | 发射地点 | 预定降落地点 | 试飞时长 | 结果 | 任务目标达成度 |
---|---|---|---|---|---|---|---|---|---|
1 | 2023年4月20日13:33 | 原定为跨大气层轨道,但未能成功进入轨道 | S24 | 彻底损毁 | 德州博卡奇卡 | 考艾岛西北面海域 | 240秒 | 超级重型助推器不正常滚转而触发飞行终止系统[115] | 失败 |
原计划为星舰与一级分离后,将进行383秒入轨推进,越过佛罗里达海峡进入预定轨道后,于夏威夷附近进行水上硬着陆 | |||||||||
B7 | 彻底损毁 | 德州博卡奇卡 | 墨西哥湾 | 240秒 | 因助推器失控而触发飞行终止系统 | 部分成功 | |||
原计划为发射后172秒与星舰分离,随后反向推进55秒,并于发射后约8分钟于发射场对出海域进行水上软着陆 | |||||||||
2 | 2023年11月18日13:02 | 原定为跨大气层轨道,但未能成功进入轨道 | S25 | 彻底损毁 | 德州博卡奇卡 | 考艾岛西北面海域 | 486秒 | 排放液氧时引发后舱段起火并中断通讯,触发AFTS并于太空解体 | 部分成功 |
原计划星舰与一级热分离后,进行316秒入轨推进,越过佛罗里达海峡进入预定轨道后,于夏威夷附近进行水上硬着陆 | |||||||||
B9 | 彻底损毁 | 德州博卡奇卡 | 墨西哥湾 | 201秒 | 液氧过滤器堵塞导致一具发动机失压而爆炸,触发AFTS并于空中解体 | 部分成功 | |||
原计划于发射后约170秒与星舰分离,随后反向推进54秒,并于发射后约7分钟于发射场对出海域进行水上软着陆 | |||||||||
3 | 2024年3月14日13:25 | 跨大气层轨道 | S28 | 彻底损毁 | 德州博卡奇卡 | 印度洋 | 约49分钟 | 重返大气层时失联并摧毁 | 大部分成功 |
原计划为星舰与一级分离后,将进行351秒入轨推进,越过佛罗里达海峡进入预定轨道后,进行多项测试后启动一具发动机进行反推进入大气层,于印度洋进行水上硬着陆 | |||||||||
B10 | 彻底损毁 | 德州博卡奇卡 | 墨西哥湾 | 420秒 | 降落时失控并于海拔462米触发AFTS解体 | 大部分成功 | |||
原计划于发射后约170秒与星舰分离,随后反向推进54秒,并于发射后约7分钟于发射场对出海域进行水上软着陆 | |||||||||
4 | 2024年6月6日12:50 | 跨大气层轨道 | S29 | 水上降落后按计划沉没 | 德州博卡奇卡 | 印度洋 | 约1小时6分钟 | 成功完成水上软着陆 | 成功 |
计划为星舰与一级分离后,将进行338秒入轨推进,越过佛罗里达海峡进入预定轨道,随后再入大气层并于印度洋上空转身着陆并进行水上软着陆。在轨期间星舰将不会进行任何额外测试,包括发动机在轨点火测试。[116] | |||||||||
B11 | 水上降落后按计划沉没 | 德州博卡奇卡 | 墨西哥湾 | 7分钟31秒 | 成功完成水上软着陆 | 成功 | |||
计划于发射后165秒与星舰分离后反向推进63秒,热分级环随即分离,并于发射后约7分钟于发射场对出海域进行水上软着陆,模拟发射台空中捕捉。 | |||||||||
5 | 10月13日12:25 | 跨大气层轨道 | S30 | 水上降落后按计划沉没 | 德州博卡奇卡 | 印度洋 | 约1小时6分钟 | 成功完成水上软着陆 | 成功 |
星舰与一级分离后,将进行346秒入轨推进,越过佛罗里达海峡进入预定轨道,随后再入大气层并于印度洋上空转身并完成水上软着陆。 | |||||||||
B12 | 等候回收 | 德州博卡奇卡 | 发射塔A | 6分钟55秒 | 发射塔成功捕捉 | 成功 | |||
发射后161秒与星舰分离后反向推进53秒,热分级环随即分离,并于发射后约7分钟于发射场完成捕捉塔空中捕捉; | |||||||||
6[117] | 2024年第四季 | 预计为跨大气层轨道 | S31 | 暂停测试 | 德州博卡奇卡 | 有待公布 | 有待发射 | 有待发射 | 有待发射 |
预计与IFT-5相似 | |||||||||
B13 | 地面测试中 | 德州博卡奇卡 | 发射塔A / 墨西哥湾 | 有待发射 | 有待发射 | 有待发射 | |||
预计与IFT-5相似 |
S20和B4原定为一组进行入轨并再入测试的星舰。为确保在重返地球时即使S20解体,碎片也不会坠落在陆地上,所以S20会在太平洋上进入大气层。S20及B4也会使用海上软着陆,以测试降落能力及保障公众安全。
2022年3月22日,马斯克确定BS420将不会进行第一亚轨道飞行测试,改由可安装二代猛禽发动机的星舰执行。[118]
S24和B7为第一组计划进入跨大气层轨道并进行再入测试的星舰。S24计划进入跨大气层轨道,再重新进入大气层,进行水上硬着陆。B7则会于墨西哥湾进行海上软着陆。
BS724于2023年4月20日早上发射升空,但最终于爬升至39公里后启动飞行中止系统,并于发射后240秒于空中解体。
此次测试用于验证星舰及超级重型助推器的设计,以及测试星舰重返大气层时承受极高温等离子的能力,并在测试中取得大量有用数据,用于修改及改良后续原型舰。
详情请参见SpaceX星舰轨道试飞任务。
S25和B9为第二组计划进入跨大气层轨道并进行再入测试的星舰。S25计划进入跨大气层轨道,再重新进入大气层,进行水上硬着陆。B9则会于墨西哥湾进行海上软着陆。
BS925于2023年11月18日早上发射升空,B9上33具猛禽发动机全部正常运作并达到目标高度,与S25进行热分级,但B9在反推期间因有液氧供应异常并导致其中一具发动机发生不可逆爆炸,导致触发飞行终止系统于约空中解体,S25则继续进行入轨推进,排出多余的液氧时泄漏导致火灾,毁坏了星舰上的飞行电脑及通讯系统导致发动机被提前命令关闭,最终飞行终止系统(FTS)启动导致星舰于约150公里高空解体[119]。
此次测试用于验证发射场设施升级、超级重型助推器及星舰大量升级、采用电力驱动矢量的猛禽发动机,以及测试星舰重返大气层时承受极高温等离子的能力,并在测试中取得大量有用数据,用于修改及改良后续原型舰。
详情请参阅SpaceX第二次星舰轨道试飞任务。
S28和B10为第三组进入跨大气层轨道并进行再入测试的星舰。S28成功进入跨大气层轨道(TAO)并成功完成在轨低温燃料于舰内两燃料箱间转移及有效载荷舱舱门测试,但原定的在轨发动机重启测试因S28滚动率过高而取消,随即重新进入大气层,但期间滚动率依然过高而失去控制,最终失联并摧毁,因此无法于印度洋进行海上硬着陆。B10则在降落时大部分发动机未能启动而于墨西哥湾高速溅落摧毁。
此次飞行预计将测试星舰在轨加油能力[120],将低温燃料于舰内两燃料箱间转移,以验证在轨加油的可行性、在轨测试有效载荷舱舱门。
详情请参阅SpaceX第三次星舰轨道试飞任务。
S29和B11为第四组进入跨大气层轨道并进行再入测试的星舰。是次测试将改进IFT-3时超重型助推器B10最终阶段所遭遇的过滤系统问题引致的发动机点火困难,以及星舰S28于再入大气层(re-entry)时因姿态控制系统堵塞的姿态调整困难,以及隔热罩(TPS-Thermal Protect System)脱落问题。此外还可能采用虚拟塔(Virtual Tower)预定GPS座标以验证回收时的精准度。此次测试星舰上级将会进行海上软着陆,为原型舰SN15后首次,同时超级重型助推器的热分级环亦会在反推后分离,以减轻助推器重量。
详情请参阅SpaceX第四次星舰轨道试飞任务。
S30和B12为第五组进入跨大气层轨道并进行再入测试的星舰。是次测试将改进IFT-4时星舰S30于再入大气层(re-entry)时隔热罩(TPS-Thermal Protect System)过脆而碎裂,影响隔热效果的问题,以及前襟翼(Forward Flaps)铰链缝隙问题。此次测试星舰上级将会进行海上软着陆。而超级重型助推器则会使用发射塔机械臂进行空中回收,以验证助推器快速回收重用。
详情请参阅SpaceX第五次星舰轨道试飞任务。
全箭的测试始于子系统级,与大多数运载火箭一样,采用火箭发动机部件测试,然后在地面测试设施中测试完整的火箭发动机。猛禽发动机的部件级测试于2014年5月开始[121],2016年9月首次进行全发动机测试。[122]截至2023年,猛禽发动机进行了多次发动机点火测试,最长的测试为330秒(2023年4月6日)。[42]
目前猛禽发动机有3种类型,分别是
猛禽发动机V2于2022年开始量产,取代V1,其推力将由V1的185公吨提升至V2的230公吨以上。目前猛禽发动机V1已退役。
猛禽发动机V2.5于2022年开始量产,取代V2,以电力驱动矢量取代液压驱动系统。目前猛禽发动机V2已退役。
猛禽发动机V3于2024年开始量产,将取代V2.5,其推力将由V2.5的230-258公吨提升至V3的280公吨以上,其设计亦大幅简化而无需安装防护罩。
此条目需要更新。 (2024年10月29日) |
星舰预计将代替大部分的猎鹰9号、猎鹰重型运载火箭以及龙飞船任务。[123][5]
星舰计划适用于以下任务:[123]
此条目需要更新。 (2024年10月29日) |
日期 | 星舰类型 | 任务 | 详情 |
---|---|---|---|
不早于2024年[127] | 货运星舰 | 月球飞行测试 | SpaceX原定计划最早于2019年进行绕月飞行测试,但目前延迟至不早于2024年[128] |
取消 | 载人星舰 | 亲爱的月球 | 原定不早于2025年载前泽友作和多位艺术家进行绕月之旅[129][130],并于2022年12月9日正式公布成员名单。[131]但于2024年6月1日宣布取消。 |
不早于2025年 | 人类着陆系统 | 人类着陆系统测试 | 美国国家航空航天局于2021年4月宣布由SpaceX进行月球登陆计划,在正式任务前需先实现轨道加注及降落载具在月球表面。 |
货运星舰(轨道加注) | |||
不早于2025年9月 | 人类着陆系统 | 阿耳忒弥斯 | 人类着陆系统第一次载人任务,确实时间视乎美国国家航空航天局阿耳忒弥斯计划及SpaceX人类着陆系统进度。 |
货运星舰(轨道加注) | |||
不早于2025年 | 货运星舰(轨道加注) | 跨行星任务 | 最早2026年发送第一架货运星舰前往火星 |
不早于2026年 | 载人星舰 | 跨行星任务 | 人类首次飞往火星执行任务.[132][需要完整来源] |
星舰飞行器的设计被批评不能充分保护宇航员免受火星飞行任务中的电离辐射的伤害;[133][134][135][136]马斯克表示,他认为前往火星的时间很短,不会导致罹患癌症的风险增加,他说:“这没什么大不了的。” [133][137][138]据估计,由多次执行火星任务导致的终身罹癌风险约为增加5%,而这可以通过简单的屏蔽措施将其大大降低。[139]
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.