路易·德布罗意
埃尔温·薛定谔
在1920年代与1930年代,理论量子物理学者大致分为两个阵营。第一个阵营的成员主要为路易·德布罗意 和埃尔温·薛定谔 等等,他们使用的数学工具是微积分 ,他们共同创建了波动力学 。第二个阵营的成员主要为维尔纳·海森堡 和马克斯·玻恩 等等,使用线性代数 ,他们建立了矩阵力学 。后来,薛定谔证明这两种方法完全等价。[ 2] :606–609
德布罗意于1924年提出的德布罗意假说 表明,每一种微观粒子都具有波粒二象性 。电子 也不例外,具有这种性质。电子是一种波动,是电子波。电子的能量与动量分别决定了它的物质波 频率与波数。既然粒子具有波粒二象性,应该会有一种能够正确描述这种量子特性的波动方程 ,这点子给予埃尔温·薛定谔 极大的启示,他因此开始寻找这波动方程。薛定谔参考威廉·哈密顿 先前关于牛顿力学 与光学 之间的类比这方面的研究,在其中隐藏了一个奥妙的发现,即在零波长 极限,物理光学 趋向于几何光学 ;也就是说,光波的轨道趋向于明确的路径,而这路径遵守最小作用量原理 。哈密顿认为,在零波长极限,波传播 趋向于明确的运动,但他并没有给出一个具体方程来描述这波动行为,而薛定谔给出了这方程。他从哈密顿-雅可比方程 成功地推导出薛定谔方程。[ 3] :207 他又用自己设计的方程来计算氢原子 的谱线 ,得到的答案与用玻尔模型 计算出的答案相同。他将这波动方程与氢原子光谱分析结果,写为一篇论文,1926年,正式发表于物理学界[ 4] [ 5] :163-167 。从此,量子力学有了一个崭新的理论平台。
薛定谔给出的薛定谔方程能够正确地描述波函数的量子行为。那时,物理学者尚未能解释波函数的涵义,薛定谔尝试用波函数来代表电荷的密度,但遭到失败。1926年,玻恩提出概率幅 的概念,成功地解释了波函数的物理意义[ 3] :219-220 。可是,薛定谔本人不赞同这种统计 或概率 方法,和它所伴随的非连续性波函数坍缩 ,如同爱因斯坦认为量子力学只是个决定性理论 的统计近似,薛定谔永远无法接受哥本哈根诠释 。在他有生最后一年,他写给玻恩的一封信内,薛定谔清楚地表明了这意见。[ 3] :479
1927年,道格拉斯·哈特里 与弗拉基米尔·福克 在对于多体 波函数的研究踏出了第一步,他们发展出哈特里-福克方程 来近似方程的解。这计算方法最先由哈特里提出,后来福克将之加以改善,能够符合泡利不相容原理的要求。[ 6] :344-345
薛定谔方程不具有洛伦兹不变性 ,无法准确给出符合相对论的结果。薛定谔试着用相对论的能量动量关系式,来寻找一个相对论性方程,并且描述电子的相对论性量子行为。但是这方程给出的精细结构不符合阿诺·索末菲 的结果,又会给出违背量子力学的负概率和怪异的负能量现象,他只好将这相对论性部分暂时搁置一旁,先行发表前面提到的非相对论性部分。[ 3] :196-197 [ 7] :3
1926年,奥斯卡·克莱因 和沃尔特·戈尔登 将电磁相对作用 纳入考量,独立地给出薛定谔先前推导出的相对论性部分,并且证明其具有洛伦兹不变性。这方程后来称为克莱因-戈尔登方程 。[ 7] :3
1928年,保罗·狄拉克 最先成功地统一了狭义相对论 与量子力学,他推导出狄拉克方程 ,适用于电子等等自旋 为1/2的粒子。这方程的波函数是一个旋量 ,拥有自旋性质。[ 5] :167
假设一个自旋为零的粒子移动于一维空间。这粒子的量子态以波函数表示为
Ψ
(
x
,
t
)
{\displaystyle \Psi (x,t)}
;其中,
x
{\displaystyle x}
是位置,
t
{\displaystyle t}
是时间。波函数是复值 函数。测量粒子位置所得到的结果不是决定性的,而是概率性的。粒子的位置
x
{\displaystyle x}
在区间
[
a
,
b
]
{\displaystyle [a,b]}
(即
a
≤
x
≤
b
{\displaystyle a\leq x\leq b}
)的概率
P
a
≤
x
≤
b
{\displaystyle P_{a\leq x\leq b}}
为
P
a
≤
x
≤
b
=
∫
a
b
|
Ψ
(
x
,
t
)
|
2
d
x
{\displaystyle P_{a\leq x\leq b}=\int _{a}^{b}\,|\Psi (x,t)|^{2}\mathrm {d} x}
;
其中,
t
{\displaystyle t}
是对于粒子位置做测量的时间。
换句话说,
|
Ψ
(
x
,
t
)
|
2
{\displaystyle |\Psi (x,t)|^{2}}
是粒子在位置
x
{\displaystyle x}
、时间
t
{\displaystyle t}
的概率密度。
这导致归一化条件:在位置空间的任意位置找到粒子的概率为100%:
∫
−
∞
∞
|
Ψ
(
x
,
t
)
|
2
d
x
=
1
{\displaystyle \int _{-\infty }^{\infty }\,|\Psi (x,t)|^{2}\mathrm {d} x=1}
。
在动量空间,粒子的波函数表示为
Φ
(
p
,
t
)
{\displaystyle \Phi (p,t)}
;其中,
p
{\displaystyle p}
是一维动量,值域从
−
∞
{\displaystyle -\infty }
至
+
∞
{\displaystyle +\infty }
。测量粒子动量所得到的结果不是决定性的,而是概率性的。粒子的动量
p
{\displaystyle p}
在区间
[
a
,
b
]
{\displaystyle [a,b]}
(即
a
≤
p
≤
b
{\displaystyle a\leq p\leq b}
)的概率为
P
a
≤
p
≤
b
=
∫
a
b
|
Φ
(
p
,
t
)
|
2
d
p
{\displaystyle P_{a\leq p\leq b}=\int _{a}^{b}\,|\Phi (p,t)|^{2}\mathrm {d} p}
。
动量空间波函数的归一化条件也类似:
∫
−
∞
∞
|
Φ
(
p
,
t
)
|
2
d
p
=
1
{\displaystyle \int _{-\infty }^{\infty }\,\left|\Phi (p,t)\right|^{2}\mathrm {d} p=1}
。
本图展示一维零自旋自由粒子 的波函数范例,左边是位置空间波函数
Ψ
(
x
)
{\displaystyle \Psi (x)}
的实部(紫色)和概率密度
|
Ψ
(
x
)
|
2
{\displaystyle |\Psi (x)|^{2}}
(红色),右边是动量空间波函数
Φ
(
p
)
{\displaystyle \Phi (p)}
的实部(金色)和概率密度
|
Φ
(
p
)
|
2
{\displaystyle |\Phi (p)|^{2}}
(蓝色)。在x-轴的某位置
x
{\displaystyle x}
或px -轴的某动量
p
{\displaystyle p}
显示出的粒子颜色的不透明度,分别表示在那位置
x
{\displaystyle x}
或动量
p
{\displaystyle p}
找到粒子的概率密度(不是波函数的概率幅)。
位置空间波函数与动量空间波函数彼此是对方的傅里叶变换 。他们各自拥有的信息相同,任何一种波函数都可以用来计算粒子的相关性质。两种波函数之间的关系为[ 8] :108
Φ
(
p
,
t
)
=
1
2
π
ℏ
∫
−
∞
∞
e
−
i
p
x
/
ℏ
Ψ
(
x
,
t
)
d
x
{\displaystyle \Phi (p,t)={\frac {1}{\sqrt {2\pi \hbar }}}\int _{-\infty }^{\infty }\,e^{-ipx/\hbar }\Psi (x,t)\mathrm {d} x}
、
Ψ
(
x
,
t
)
=
1
2
π
ℏ
∫
−
∞
∞
e
i
p
x
/
ℏ
Φ
(
p
,
t
)
d
p
{\displaystyle \Psi (x,t)={\frac {1}{\sqrt {2\pi \hbar }}}\int _{-\infty }^{\infty }\,e^{ipx/\hbar }\Phi (p,t)\mathrm {d} p}
。
量子力学中体系的态实际上由一个希尔伯特空间里的
|
J
(
t
)
⟩
{\displaystyle |{\mathfrak {J}}(t)\rangle }
矢量来描述。我们可以用任何不同的基来表示它。[ 9]
波函数
Ψ
(
x
,
t
)
{\displaystyle \Psi (x,t)}
实际上是
|
J
(
t
)
⟩
{\displaystyle |{\mathfrak {J}}(t)\rangle }
在坐标本征函数为基上展开的
x
{\displaystyle x}
“分量”:
Ψ
(
x
,
t
)
=
⟨
x
∣
J
(
t
)
⟩
,
{\displaystyle \Psi (x,t)=\langle x\mid {\mathfrak {J}}(t)\rangle ,}
(这里基矢量
|
x
⟩
{\displaystyle |x\rangle }
对应于本征值为
x
{\displaystyle x}
的算符
x
^
{\displaystyle {\hat {x}}}
的本征函数)。[ 9]
动量空间波函数
Φ
=
(
p
,
t
)
{\displaystyle \Phi =(p,t)}
是
|
J
(
t
)
⟩
{\displaystyle |{\mathfrak {J}}(t)\rangle }
用动量本征函数的基展开时的展开系数:
Φ
(
p
,
t
)
=
⟨
p
∣
ℑ
(
t
)
⟩
{\displaystyle \Phi (p,t)=\langle p\mid {\mathfrak {\Im }}(t)\rangle }
(这里基矢量
|
p
⟩
{\displaystyle |p\rangle }
对应于属于本征值
p
{\displaystyle p}
的
p
^
{\displaystyle {\hat {p}}}
的本征函数)[ 9] [ 注 3] 。
我们也可以把
|
F
(
t
)
⟩
{\displaystyle |{\mathfrak {F}}(t)\rangle }
用能量本征函数的基展开(简单起见,假设谱是分立的):
c
n
(
t
)
=
⟨
n
∣
ℑ
(
t
)
⟩
{\displaystyle c_{n}(t)=\langle n\mid {\mathfrak {\Im }}(t)\rangle }
(这里基矢量
|
n
⟩
{\displaystyle |n\rangle }
对应属于
H
^
{\displaystyle {\hat {H}}}
的第
n
{\displaystyle n}
个本征函数:
c
n
=
⟨
f
n
∣
Ψ
⟩
=
∫
f
n
(
x
)
∗
Ψ
(
x
,
t
)
d
x
{\displaystyle c_{n}=\left\langle f_{n}\mid \Psi \right\rangle =\int f_{n}(x)^{*}\Psi (x,t)\mathrm {d} x}
) 。[ 9]
波函数
Ψ
{\displaystyle \Psi }
与
Φ
{\displaystyle \Phi }
和系数的集合
{
c
n
}
{\displaystyle \left\{c_{n}\right\}}
,所有这些所表示的都是同一个状态,包含完全一样的信息——它们仅是描述同一矢量的三种不同途径而已[ 9] :
|
J
(
t
)
⟩
→
∫
Ψ
(
y
,
t
)
δ
(
x
−
y
)
d
y
=
∫
Φ
(
p
,
t
)
1
2
π
ℏ
e
i
p
x
/
ℏ
d
p
=
∑
c
n
e
−
i
E
n
t
/
ℏ
ψ
n
(
x
)
{\displaystyle |{\mathfrak {J}}(t)\rangle \rightarrow \int \Psi (y,t)\delta (x-y)dy=\int \Phi (p,t){\frac {1}{\sqrt {2\pi \hbar }}}e^{ipx/\hbar }dp=\sum c_{n}e^{-iE_{n}t/\hbar }\psi _{n}(x)}
在一维空间里,运动于位势
V
(
x
)
{\displaystyle V(x)}
的单独粒子,其波函数满足含时薛定谔方程
−
ℏ
2
2
m
∂
2
∂
x
2
Ψ
(
x
,
t
)
+
V
(
x
)
Ψ
(
x
,
t
)
=
i
ℏ
∂
∂
t
Ψ
(
x
,
t
)
{\displaystyle -{\frac {\hbar ^{2}}{2m}}{\frac {\partial ^{2}}{\partial x^{2}}}\Psi (x,t)+V(x)\Psi (x,t)=i\hbar {\frac {\partial }{\partial t}}\Psi (x,t)}
;
其中,
m
{\displaystyle m}
是质量 ,
ℏ
{\displaystyle \hbar }
是约化普朗克常数 。
不含时薛定谔方程 与时间无关,可以用来计算粒子的本征能量 与其它相关的量子性质。应用分离变数法 ,猜想
Ψ
(
x
,
t
)
{\displaystyle \Psi (x,\,t)}
的函数形式为
Ψ
(
x
,
t
)
=
ψ
E
(
x
)
e
−
i
E
t
/
ℏ
{\displaystyle \Psi (x,\,t)=\psi _{E}(x)e^{-iEt/\hbar }}
;
其中,
E
{\displaystyle E}
是分离常数,稍加推导可以论定
E
{\displaystyle E}
就是能量 ,
ψ
E
(
x
)
{\displaystyle \psi _{E}(x)}
是对应于
E
{\displaystyle E}
的本征函数 。
代入这猜想解,经过一番运算,可以推导出一维不含时薛定谔方程:
−
ℏ
2
2
m
∂
2
∂
x
2
ψ
E
(
x
)
+
V
(
x
)
ψ
E
(
x
)
=
E
ψ
E
(
x
)
{\displaystyle -{\frac {\hbar ^{2}}{2m}}{\frac {\partial ^{2}}{\partial x^{2}}}\psi _{E}(x)+V(x)\psi _{E}(x)=E\psi _{E}(x)}
。
波函数
Ψ
(
r
,
t
)
{\displaystyle \Psi (\mathbf {r} ,t)}
是概率波。其模的平方
|
Ψ
(
r
,
t
)
|
2
{\displaystyle \vert \Psi (\mathbf {r} ,t)\vert ^{2}\,}
代表粒子在该处出现的概率密度 ,并且具有归一性,全空间的积分
∫
|
Ψ
(
r
,
t
)
|
2
d
3
x
=
1
{\displaystyle \int \vert \Psi (\mathbf {r} ,t)\vert ^{2}\,d^{3}\,x=1}
。
波函数的另一个重要特性是相干性。两个波函数叠加,概率的大小取决于两个波函数的相位差,类似光学中的杨氏双缝实验 。
3D空间中的自由粒子,其波矢 为k , 角频率 为ω ,其波函数为:
Ψ
(
r
,
t
)
=
A
e
i
(
k
⋅
r
−
ω
t
)
.
{\displaystyle \Psi (\mathbf {r} ,t)=Ae^{i(\mathbf {k} \cdot \mathbf {r} -\omega t)}\,.}
粒子被限制在x = 0 和x = L 之间的1D空间中,其波函数为:[ 8] :30-38
Ψ
(
x
,
t
)
=
2
L
sin
(
n
π
x
L
)
e
−
i
ω
n
t
,
0
≤
x
≤
L
Ψ
(
x
,
t
)
=
0
,
x
<
0
,
x
>
L
{\displaystyle {\begin{aligned}\Psi (x,t)&={\sqrt {\frac {2}{L}}}\sin \left({\frac {n\pi x}{L}}\right)e^{-i\omega _{n}t},&\quad 0\leq x\leq L\\\Psi (x,t)&=0,&x<0,x>L\\\end{aligned}}}
其中,
ℏ
ω
n
=
n
2
h
2
8
m
L
2
{\displaystyle \hbar \omega _{n}={\frac {n^{2}h^{2}}{8mL^{2}}}}
是能量本征值,
n
{\displaystyle n}
是正整数,
m
{\displaystyle m}
是质量。
量子点中3D受束缚的电子波函数。如图所示为方形和三角形量子点。方形量子点中的电子态更像s轨道 和p轨道 。然而,由于不同的几何形态导致不同的束缚,三角形量子点中的波函数则是多种轨道混合的结果。
量子点 是在把激子 在三个空间方向上束缚住的半导体 纳米结构 。粒子在三个方向上都处在势阱中。势阱可以由于静电势(由外部的电极,掺杂,应变,杂质产生),两种不同半导体材料的界面(例如:在自组量子点中),半导体的表面(例如:半导体纳米晶体 ),或者以上三者的结合。量子点具有分离的量子化的能谱。所对应的波函数在空间上位于量子点中,但延伸于数个晶格周期中。其中的能级可以用类似无限深方形阱 的模型来描述,能级位置取决于势阱宽度。