在数学中,负三记作−3,是介于负四与负二之间的整数,为3的加法逆元或相反数[1]:22[2],即其与三的和为零[3],偶尔会被视为3的逆反词或相对概念[4]。日常生活中通常不会用负三来计量事物,例如无法具体地描述何谓负三头牛[4]或持有负三颗苹果[5]。
Quick Facts ← −4 −3 −2 →, 命名 ...
Close
负三经常在信号处理领域被提及,因为负三分贝约为能量的一半[6]。因此,负三分贝又称为半能点[7],经常在滤波器、滤光器和放大器[8]中使用[9]。在国际单位制基本单位的表示法中,负三偶尔也会做为幂次来表达立方倒数,比如密度的单位kg・m-3[10]。
- 负三为第二大的负奇数。最大的负奇数为负一,而负三为负一的三倍[11]。
- 负三与无理数的值十分接近[12],因此在信号处理领域中经常使用负三分贝代表能量为一半的情况[6]。
- 负三是最大的负基本判别式[13],同时,在2-rank为0时,负三是绝对值最小的基本判别式[14]。
- 负三能使连续三个奇数的乘积加一为平方数。有这种性质的奇数只有-3和1,而所有满足n(n+2)(n+4)+1为平方数的整数只有11个,分别为-4, -3, -2, 0, 1, 2, 8, 10, 18, 112, 1272[15]。
- 负三能使二次域的类数为1,即的类数为1,亦即其整数环为唯一分解整环[注 1][16],且这个二次域在复平面上形成了一个六角网格,每个六边形又可分成6个三角形(三角网格)[17]:289。
- 而根据史塔克-黑格纳理论,包含负三,有此性质的负数只有9个[18][17]:295[19][20],其对应的自然数称为黑格纳数[21]。
- 此外负三也能使二次域成为简单欧几里得整环(simply Euclidean fields,或称欧几里得范数整环,Norm-Euclidean fields)[22],即为简单欧几里得整环。有此性质的负数只有-11, -7, -3, -2, -1(OEIS数列A048981)[23]。若放宽条件,则-15也能列入[24][25]。
- 若考虑正数,则-3是第七个有此性质的数,前一个是-7、下一个是-2[16][26]。
- 负三与负三的乘积为正九[27],即负三的平方为九[28],因此负三为九的平方根之一,即九的负平方根。[注 2]
- 现有两数i和j,i和j的乘积与六倍i和j的和相等,且其和与i、j皆为整数的结果只有8个解,负三是其中之一[31]。
- 负三为四维超立方体(或四维超方形)下闭集合中欧拉示性数的最小值[32]。
负三的约数有-3, -1, 1和3[33],这些约数与3的约数相同。在素因数分解中,虽然能够透过将负一提出来完成素因数分解[34][35],
即,然而算术基本定理一般以探讨正整数的素因数分解为主[16],因此一般不会对负的整数进行素因数分解。[36]
若一数的幂为负三次,则其可以视为立方的倒数,例如日常生活中常用的密度CGS制单位g/cm3[37],其因此可以表示为质量乘以长度的立方倒数,计为ML-3,此时负三用以表示立方的倒数[38]。
而立方倒数中的相关议题还有立方倒数和。自然数的负三次次方和(立方倒数和)会收敛并趋近于阿培里常数,即:
- = [39]
即全体自然数的负三次方和会收敛在这个数。其值约为1.202056903。同时其也是Zeta函数代入3的结果[39]。
负三通常以在3前方加入负号表示[1]:28[40],通常称为“负三”或大写“负叁”、“负叁”或“负参”,而在某些场合中,会以“零下三”表达-3,例如在表达温度时[41][42]。而在英语中通常以negative three(负三)表示,比较不会以minus three(减三)表示[43]。
在二进制时,尤其是计算机运算,负数的表示通常会以补码来表示[44],即将所有位数填上1,再向下减。此时,负三计为“......11111101(2)”,例如,在八比特的补码二进制中,负三会以“11111101(2)”表示,正三会以“00000011(2)”;而在使用负号的表示法中,负三计为“-11(2)”,亦有在最高位填1表示其为负之表示法,此时负三表示为“10000011(2)”[45]。
当d<0时,若的整数环为唯一分解整环,就表示的数字都只有一种约数分解方式,例如的整数环不是唯一分解整环,因为6可以以两种方式在 中表成整数乘积: 和 。
许多计算机程序库会实现零年的功能,例如Perl CPAN 的 DateTime module[53]。
Glaeser Georges. Épistémologie des nombres relatifs. Recherches en Didáctique des mathématique: pp.303–346.
Anglin, K.L. CliffsQuickReview Math Word Problems. John Wiley & Sons. 2007: 122. ISBN 9780470197264.
Riesel, H. Prime Numbers and Computer Methods for Factorization. Progress in Mathematics. Birkhäuser Boston, Springer Science & Business Media. 2012. ISBN 9781461202516. LCCN 94027688.
Square Root Calculator. calculatorsoup.com. [2020-04-25]. (原始内容存档于2017-05-24). For example, the square roots of 9 are -3 and +3, since (-3)2 = (+3)2 = 9.
Alshwaikh, Jehad and Adler, Jill. Researchers and teachers as learners in Lesson Study. 2017-04: 10. ISBN 978-0-9922269-4-7.
E.g. Section 4.2.1 in Intel 64 and IA-32 Architectures Software Developer's Manual, Signed integers are two's complement binary values that can be used to represent both positive and negative integer values., Volume 1: Basic Architecture, 2006-11
單位符號用語. tlri.gov.tw. [2020-04-25]. (原始内容存档于2017-08-01).
数の単位. ashiya.ne.jp. [2020-04-16]. (原始内容存档于2017-08-27).
Richards, E. G. Calendars. Urban, Sean E.; Seidelmann, P. Kenneth (编). Explanatory Supplement to the Astronomical Almanac 3. Mill Valley, CA: Univ Science Books. 2013: 591. ISBN 1-891389-85-8.
Mallama, A. Planetary magnitudes. Sky & Telescope. 2011, 121 (1): 51–56.
Silverman, S.M. and Mullen, E.G. and Air Force Cambridge Research Laboratories (U.S.). Sky Brightness During Eclipses: A Compendium from the Literature. AFCRL TR. Air Force Cambridge Research Laboratories, Air Force Systems Command, United States Air Force. 1974: 27-29.
火流星概說. vm.nthu.edu.tw. [2020-04-25]. (原始内容存档于2019-12-24).
Wenyi Zhao. Handbook for Chemical Process Research and Development. CRC Press, 2016. 2.1.1.2 Sulfuric Acid. ISBN 9781315350202
Andrew Burrows, John Holman, Andrew Parsons, Gwen Pilling, Gareth Price. Chemistry³: Introducing Inorganic, Organic and Physical Chemistry. OUP Oxford, 2013. pp 329. The strengths of oxoacids. ISBN 9780199691852
Haynes, W. M. (2014). CRC Handbook of Chemistry and Physics 95ed. CRC Press. ISBN 97814822-08689.