Loading AI tools
来自维基百科,自由的百科全书
完全扭棱二十面体(holosnub icosahedron)又称小扭棱二十面二十面十二面体(small snub icosicosidodecahedron),其索引为U32,是正二十面体的完全扭棱(holosnub)立体[7],在施莱夫利符号中可以用ß{3,5}来表示[8],由100个正三角形和12个五边形组成,其星状核为截角五角化十二面体,对偶多面体为小六角六十面体。[3]
完全扭棱二十面体共有20对共面的正三角形,每对外观呈非正的星形六边形,这个外观类似星形六边形的面共有20个,对应到正二十面体的20个面,而使整个立体看起来由正三角形、六角星和五角星组成。[9]:172
40个非扭棱三角形面是来自于20组的共面三角形,每组三角形所形成的六角星皆非正六角星[9]:172,剩余的60个三角形来自于扭棱变换。特别地,这个扭棱多面体与其他扭棱多面体不同,其具有镜像对称性。
完全扭棱二十面体共由112个面、180条边和60个顶点组成[10][11][4]。在其112个面中,有100个正三角形面和12个正五边形面[12],其中40个正三角形面俩俩一组互相共面形成星形六边形,所形成的星形六边形面凸包和五角星面凸包呈现于其整体凸包上[13],其中星形六边形面凸包所对应的六边形是等角六边形,若完全扭棱二十面体的边长为单位长,则星形六边形对应凸包之等角六边形与五角星对应凸包之五边形相邻边的边长为黄金比例的倒数,约为0.61803,星形六边形对应凸包之等角六边形的另一边长则为约为0.535687,其中,为黄金比例。
其60个顶点,每个顶点都是5个三角形和1个五角星的公共顶点,在顶点图中可以用(3.5⁄2.3.3.3.3)[14][10][15][16]或[5⁄2,35][17]来表示。
完全扭棱二十面体在考克斯特—迪肯符号中可以表示为[1][2]或(β3β5o)[1]。在施莱夫利符号中可以表示为ß{3,5}。在威佐夫记号中可以表示为| 3 3 5⁄2[3]或| 5⁄2 3 3[4][5][6]。
完全扭棱二十面体有两种二面角,分别为三角形面与三角形面的二面角以及五角星面与三角形面的二面角。[12]
其中三角形面与三角形面的二面角约为155.668度:[12]
而五角星面与三角形面的二面角约为161.02度:[12]
若完全扭棱二十面体的边长为单位长,则其外接球半径为:[12][3]
完全扭棱二十面体的凸包是一个非均匀的截角二十面体,其六边形面由等角但不等边的六边形组成。[13]
截角二十面体 (正多边形面) |
凸包 (等角六边形面) |
完全扭棱二十面体 |
其中,为黄金比例,而。
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.