Loading AI tools
п'ята від Сонця й найбільша планета Сонячної системи З Вікіпедії, вільної енциклопедії
Юпі́тер — п'ята від Сонця та найбільша планета Сонячної системи. Відстань Юпітера від Сонця змінюється в межах від 4,95 до 5,45 а. о. (740—814 млн км), середня відстань 5,203 а. о. (778 млн км). Разом із Сатурном, Ураном і Нептуном Юпітер класифікують як газового гіганта.
Позначення | |||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Названа на честь | верховного бога римського пантеону Юпітера | ||||||||||||||||||||||
Орбітальні характеристики | |||||||||||||||||||||||
Велика піввісь | 778 547 200 км 5,204 а. о. | ||||||||||||||||||||||
Перигелій | 740 000 000 км 4,950 а. о. | ||||||||||||||||||||||
Афелій | 816 620 000 км 5,458 а. о.[1] | ||||||||||||||||||||||
Ексцентриситет | 0,0484 | ||||||||||||||||||||||
Орбітальний період | 11,862 років | ||||||||||||||||||||||
Синодичний період | 398,88 діб | ||||||||||||||||||||||
Середня орбітальна швидкість | 13,06 км/с | ||||||||||||||||||||||
Нахил орбіти | 1,305° до екліптики 6.09° до сонячного екватора 0,32° до незмінної площини | ||||||||||||||||||||||
Кутова відстань | 29,8″—50,1″ | ||||||||||||||||||||||
Довгота висхідного вузла | 100,492° | ||||||||||||||||||||||
Аргумент перицентру | 275,066° | ||||||||||||||||||||||
Супутники | 95[2][3] | ||||||||||||||||||||||
Фізичні характеристики | |||||||||||||||||||||||
Середній радіус | 69 911 ± 6 км 10,973 Землі | ||||||||||||||||||||||
Екваторіальний радіус | 71 492 ± 4 км 11,209 Землі | ||||||||||||||||||||||
Полярний радіус | 66 854 ± 10 км 10,517 Землі | ||||||||||||||||||||||
Сплюснутість | 0,06487 | ||||||||||||||||||||||
Площа поверхні | 6,1419× 1010 км² 121,9 Землі | ||||||||||||||||||||||
Об'єм | 1,4313× 1015 км³ 1321,3 Землі | ||||||||||||||||||||||
Маса | 1,8986× 1027 кг 318 мас Землі | ||||||||||||||||||||||
Середня густина | 1330 кг/м³ | ||||||||||||||||||||||
Прискорення вільного падіння на поверхні | 24,79 м/с² 2,52 g | ||||||||||||||||||||||
Друга космічна швидкість | 59,5 км/с | ||||||||||||||||||||||
Період обертання | 9 год 55 хв 30 с | ||||||||||||||||||||||
Нахил осі | 3,13° | ||||||||||||||||||||||
Альбедо | 0,343 (Бонд)[1] 0,52 (геом. альбедо)[1] | ||||||||||||||||||||||
Видима зоряна величина | max −2,94m | ||||||||||||||||||||||
Атмосфера | |||||||||||||||||||||||
Тиск на поверхні | 20—220 кПа[4] | ||||||||||||||||||||||
Склад |
| ||||||||||||||||||||||
Юпітер у Вікісховищі |
Юпітер більш ніж удвічі масивніший за всі інші планети разом узяті; він майже в 318 разів масивніший за Землю. Однак маса Юпітера недостатня, аби перетворитися на зорю, подібну до Сонця: для цього його маса мала б бути ще в 70—80 разів більшою. Тим не менш у надрах Юпітера відбуваються процеси з досить потужною енергетикою: теплове випромінювання планети, еквівалентне 4·1017 Вт, що приблизно вдвічі перевищує енергію, яку ця планета отримує від Сонця. Можливим джерелом такої енергії є гравітаційне стиснення.
Планета була відома людям із глибокої давнини, що знайшло своє відображення в міфології і релігійних віруваннях різних культур: месопотамської, вавилонської, грецької та інших. Сучасна назва Юпітера походить від імені давньоримського верховного бога-громовержця.
Низка атмосферних явищ на Юпітері — як-от шторми, блискавки, полярні сяйва, — мають масштаби, що на порядки перевершують земні. Примітним утворенням в атмосфері є Велика червона пляма — велетенський шторм, відомий ще з XVII ст.[5][6].
Юпітер має 95 супутників, найбільші з яких — Іо, Європа, Ганімед і Каллісто — було відкрито 1610 року. Ще 12 супутників було відкрито у 2018 році[7]. Дослідження Юпітера здійснюють за допомогою наземних і орбітальних телескопів, з 1970-х років до планети було відправлено 8 міжпланетних апаратів НАСА: «Піонери», «Вояджери», «Галілео» та ін. 2011 року було запущено автоматичну міжпланетну станцію Юнона (англ. Juno, також Jupiter Polar Orbiter, яку розробили НАСА і Лабораторія реактивного руху), що розпочала детальні дослідження Юпітера 4 липня 2016 року.
Відстань між Юпітером і Землею коливається від 588 до 967 млн км (видимі кутові розміри Юпітера при цьому змінюються від 50,1″ до 29,8″). Видима зоряна величина змінюється від −2,94m до −1,6m.
Під час великих протистоянь (одне з яких відбувалося у вересні 2010 року) Юпітер видно неозброєним оком як один із найяскравіших об'єктів на нічному небі (після Місяця й Венери). Диск і супутники Юпітера — популярні об'єкти для спостереження астрономів-аматорів, які зробили низку відкриттів (наприклад, комети Шумейкера — Леві, одна з яких зіткнулася з Юпітером 1994 року, чи зникнення Південного екваторіального поясу Юпітера 2010 року)[8].
В інфрачервоній ділянці спектра лежать лінії молекул H2 і He, а також лінії багатьох інших елементів[9]. Кількість перших двох несе інформацію про походження планети, а кількісний та якісний склад інших — про її внутрішню еволюцію.
Однак молекули водню й гелію не мають дипольного моменту, отже, абсорбційні лінії[10] цих елементів непомітні доти, доки не починається їхня іонізація. Крім того, ці лінії утворюються в найвищих шарах атмосфери і не несуть інформацію про глибші шари. Тому надійніші дані про кількість гелію й водню на Юпітері отримано зі спускового апарата «Галілео»[9].
Поки що не можна з упевненістю сказати, які процеси відбуваються в атмосфері Юпітера й наскільки сильно вони впливають на хімічний склад — як у внутрішніх областях, так і в зовнішніх шарах. Це створює певні труднощі детальної інтерпретації спектра. Проте вважається, що всі процеси, здатні так чи інакше впливати на велику кількість елементів, є локальним й досить обмеженими, отже, вони не здатні глобально змінити розподіл речовини[11].
Також Юпітер випромінює (здебільшого в інфрачервоній ділянці спектра) на 60 % більше енергії, ніж отримує від Сонця[12][13]. Енергія виділяється за рахунок гравітаційного стиснення планети, внаслідок чого розмір Юпітера зменшується приблизно на 2 см за рік[14].
Випромінювання Юпітера в гамма-діапазоні пов'язано з полярними сяйвами, а також із випромінюванням диска[15]. Уперше зареєстровано в 1979 році космічною обсерваторією імені Ейнштейна. На Землі ділянки полярних сяйв у рентгенівському та ультрафіолетовому діапазоні практично збігаються, проте на Юпітері це не так. Ділянка рентгенівських полярних сяйв розташована набагато ближче до полюса, ніж ультрафіолетових. Ранні спостереження виявили пульсацію випромінювання з періодом у 40 хвилин, однак у пізніших спостереженнях ця залежність проявляється набагато гірше.
Очікувалося, що рентгенівський спектр авроральних сяйв на Юпітері схожий на рентгенівський спектр комет, проте, як показали спостереження Чандра, це не так. Спектр складається з емісійних ліній із піками поблизу 650 еВ (кисневі лінії), 653 еВ та 774 еВ (лінії OVIII), а також 561 еВ і 666 еВ (OVII). Існують також лінії випромінювання нижчих енергій у спектральній ділянці від 250 до 350 еВ. Можливо, вони належать сірці або вуглецю[16].
Гамма-випромінювання, не пов'язане з полярним сяйвом, вперше було виявлено при спостереженнях на ROSAT 1997 року. Спектр схожий зі спектром полярних сяйв, однак у районі 0,7—0,8 кеВ[15]. Особливості спектра добре описуються моделлю корональної плазми з температурою 0,4—0,5 кеВ із сонячною металічністю, з додаванням емісійних ліній Mg10+ та Si12+. Існування останніх, можливо, пов'язано з сонячною активністю в жовтні-листопаді 2003 року[15].
Спостереження космічної обсерваторії XMM-Newton показали, що випромінювання диска в гамма-спектрі — це відбите сонячне рентгенівське випромінювання[джерело?]. На відміну від полярних сяйв, ніякої періодичності змін інтенсивності випромінювання на масштабах від 10 до 100 хв виявлено не було.
Юпітер — найпотужніше (після Сонця) радіоджерело Сонячної системи в дециметровому — метровому діапазонах довжин хвиль. Радіовипромінювання має спорадичний характер і в максимумі сплеску досягає 106 янських[17].
Сплески відбуваються в діапазоні частот від 5 до 43 МГц (найчастіше — поблизу 18 МГц), у середньому їх ширина становить приблизно 1 МГц. Тривалість сплеску невелика: від 0,1—1 с (іноді — до 15 с). Випромінювання дуже поляризоване, особливо по колу, ступінь поляризації сягає 100 %. Спостерігається модуляція випромінювання близьким супутником Юпітера Іо, що обертається всередині магнітосфери: ймовірність сплеску більша, коли Іо перебуває поблизу елонгації щодо Юпітера. Монохроматичний характер випромінювання свідчить про виділену частоту, найімовірніше — гірочастоту. Висока температура яскравості (іноді сягає 1015K) потребує залучення ефектів типу мазерів[17].
Радіовипромінювання Юпітера в міліметровому — короткосантиметровому діапазонах має суто тепловий характер, хоча відповідна температура дещо вища рівноважної, що означає потік тепла з надр. Починаючи з хвиль ~9 см яскравісна температура (Tb) зростає — з'являється нетеплова складова, пов'язана з синхротронним випромінюванням релятивістських частинок із середньою енергією ~ 30 МеВ у магнітному полі Юпітера; на хвилі 70 см Tb сягає значення ~ 5× 104 K. Джерела випромінювання розташовані по обидва боки планети у вигляді двох протяжних лопатей, що вказує на магнітосферне походження випромінювання[17].
Зі спостережень руху природних супутників, а також з аналізу траєкторій космічних апаратів можна відновити гравітаційне поле планети. Своєю чергою, поле залежить від маси планети, її екваторіального радіуса і моменту інерції. У загальному вигляді гравітаційний потенціал подають у вигляді поліномів Лежандра вищих порядків[18]:
Jn | J2 | J4 | J6 |
---|---|---|---|
Значення | 1,4697× 10−2 | −5,84× 10−4 | 0,31× 10−4 |
Під час прольотів поблизу Юпітера космічних апаратів «Піонер-10», «Піонер-11», «Вояджер-1», «Вояджер-2», «Галілео» і «Кассіні» для обчислення гравітаційного потенціалу використовувалися: вимірювання ефекту Доплера апаратів (для відстеження їх швидкості), зображення, що передається апаратами для визначення їх місця розташування щодо Юпітера і його супутників, радіоінтерферометрія з наддовгими базами[19]. Для «Вояджера-1» і «Піонера-11» довелося враховувати і гравітаційний вплив Великої червоної плями[20].
Крім того, при обробці даних доводиться постулювати вірність теорії про рух Галілеєвих супутників навколо центру Юпітера. Для точних обчислень великою проблемою є також облік прискорення, що має негравітаційний характер[20].
За характером гравітаційного поля можна робити висновки про внутрішню будову планети[21].
Юпітер — найбільша планета Сонячної системи, газовий гігант. Його екваторіальний радіус дорівнює 71,4 тис. км[23], що в 11,2 раза перевищує радіус Землі[1].
Юпітер — єдина планета, для якої центр мас із Сонцем перебуває поза межами Сонця (на відстані приблизно 7 % сонячного радіуса)[24].
Маса Юпітера у 2,47 раза[25] перевищує сумарну масу всіх інших планет Сонячної системи, разом узятих[26], у 317,8 раза — масу Землі[1] і приблизно в 1000 разів менше маси Сонця[23]. Густина (1326 кг/м³) приблизно дорівнює густині Сонця і в 4,16 раза поступається густині Землі (5515 кг/м³)[1]. Сила тяжіння на його поверхні (якою зазвичай вважають верхній шар хмар) більш ніж у 2,4 раза перевершує земну: тіло, яке має масу, наприклад, 100 кг[27], буде важити стільки ж, скільки на поверхні Землі важить тіло масою 240 кг[28]. Це відповідає прискоренню вільного падіння 24,79 м/с² на Юпітері (проти 9,80 м/с² для Землі)[1].
Більшість відомих наразі екзопланет можна порівняти з Юпітером за масою й розмірами, тому його маса (MJ) і радіус (RJ) широко застосовуються як одиниці вимірювання для відповідних характеристик екзопланет.
Рік | Дата | Відстань, а. о. |
---|---|---|
1951 | 2 жовтня | 3,94 |
1963 | 8 жовтня | 3,95 |
1975 | 13 жовтня | 3,95 |
1987 | 18 жовтня | 3,96 |
1999 | 23 жовтня | 3,96 |
2010 | 21 вересня | 3,95 |
2022 | 26 вересня | 3,95 |
2034 | 1 жовтня | 3,95 |
2046 | 6 жовтня | 3,95 |
2058 | 11 жовтня | 3,95 |
2070 | 16 жовтня | 3,95 |
При спостереженнях із Землі під час протистояння Юпітер може досягати видимої зоряної величини −2,94m, це робить його третім за яскравістю об'єктом на нічному небі після Місяця та Венери. При найбільшому віддаленні видима величина падає до −1,61m. Відстань між Юпітером і Землею змінюється в межах від 588 до 967 млн км[29].
Протистояння Юпітера відбуваються з періодом раз на 13 місяців. 2010 року протистояння планети-гіганта припало на 21 вересня. Раз у 12 років відбуваються великі протистояння Юпітера, коли планета перебуває біля перигелію своєї орбіти. У цей проміжок часу його кутовий розмір для спостерігача з Землі досягає 50 кутових секунд, а блиск — яскравіше −2,9m[30].
Середня відстань між Юпітером і Сонцем становить 778,57 млн км (5,2 а. о.), а період обертання дорівнює 11,86 року[31][32]. Оскільки ексцентриситет орбіти Юпітера дорівнює 0,0488, то різниця відстаней до Сонця в перигелії та афелії становить 76 млн км.
Головний внесок у збурення руху Юпітера вносить Сатурн. Збурення першого роду — вікове, воно діє на масштабі ~70 тисяч років, змінюючи ексцентриситет орбіти Юпітера від 0,2 до 0,06, а нахил орбіти від ~1° — 2°. Збурення другого роду — резонансне з відношенням, близьким до 2:5 (з точністю до 5 знаків після коми — 2:4,96666[33][34]).
Екваторіальна площина планети близька до площини її орбіти (нахил осі обертання становить 3,13° порівняно з 23,45° для Землі[1]), тому на Юпітері не буває зміни пір року[35][36].
Юпітер обертається навколо власної осі швидше, ніж будь-яка інша планета Сонячної системи[37]. Період обертання на екваторі — 9 год 50 хв 30 с, а на середніх широтах — 9 год 55 хв 40 с[38]. Через швидке обертання екваторіальний радіус Юпітера (71 492 км) більший від полярного (66 854 км) на 6,49 %; таким чином, стиснення планети дорівнює (1:51,4)[1].
Юпітер має величезне магнітне поле, що складається з двокомпонентних полів: дипольного (як поле Землі), що сягає відстані до 1,5 млн км від Юпітера, і недипольного, що займає іншу частину магнітосфери. Напруженість магнітного поля на поверхні планети 10—15 ерстед, тобто у 20 разів більше, ніж на Землі. Магнітосфера Юпітера у напрямку від Сонця сягає на 650 млн км (за орбіту Сатурна!), але в напрямку до Сонця вона майже в 40 разів менша. Магнітне поле захоплює сонячний вітер, утворюючи на відстані 177 000 км від планети радіаційний пояс, приблизно вдесятеро потужніший від земного. Він розташований між кільцем Юпітера й найвищими шарами атмосфери.
Магнітометричні виміри показали істотні збурення магнітного поля Юпітера поблизу Європи й Каллісто, що не може бути пояснено існуванням у цих супутників внутрішнього ядра з феромагнітної речовини, оскільки в такому разі магнітне поле, спадало б пропорційно кубу відстані від супутника, і було б увосьмеро слабшим. Одне з можливих пояснень — поява в оболонках планет вихрових електричних струмів, магнітне поле яких викривлює поле планети-гіганта. Ці струми можуть поширюватися в провідній рідині, наприклад у воді з солоністю 37,5 ‰ (близько до солоності океанів Землі), що лежить під поверхнею небесного тіла; існування такого океану на Європі вважається імовірним. Вихрові струми, що забезпечують спостережувані варіації магнітного поля, можуть утворюватися в шарі води товщиною трохи більше ніж 10 км.
Магнітосфера Юпітера утримує навколишню плазму у вузькому шарі, напівтовщина якого близько двох радіусів планети поблизу екватора еквівалентного магнітного диполя. Плазма обертається разом із Юпітером, періодично накриваючи його супутники. У системах відліку, зв'язаних із супутниками, магнітне поле пульсує з амплітудами 220 нТл (Європа) і 40 нТл (Каллісто), наводячи вихрові струми в провідних шарах супутників. Ці струми генерують вихрові магнітні поля також дипольної конфігурації, що накладаються на власні поля цих супутників. Періоди зміни магнітних полів становлять 11,1 і 10,1 години для Європи й Каллісто, відповідно.
Юпітер має потужні радіаційні пояси[39]. При зближенні з Юпітером «Галілео» отримав дозу радіації, що у 25 разів перевищувала смертельну дозу для людини. Випромінювання радіаційного пояса Юпітера в радіодіапазоні вперше було виявлено 1955 року. Радіовипромінювання має синхротронний характер. Електрони в радіаційних поясах мають величезну енергію, що дорівнює близько 20 МеВ[40], при цьому зондом «Кассіні» було виявлено, що щільність електронів у радіаційних поясах Юпітера нижча, ніж очікувалося. Потік електронів у радіаційних поясах Юпітера може становити серйозну небезпеку для космічних апаратів через високий ризик пошкодження апаратури радіацією[39]. Радіовипромінювання Юпітера не є строго однорідним і постійним — як по часу, так і по частоті. Середня частота такого випромінювання, за даними досліджень, становить порядку 20 МГц, а увесь діапазон частот — від 5—10 до 39,5 МГц[41].
Юпітер оточений іоносферою протяжністю 3000 км.
Юпітер має яскраві стійкі сяйва навколо обидвох полюсів. На відміну від таких же на Землі, що з'являються в періоди підвищеної сонячної активності, полярні сяйва Юпітера є постійними, хоча їхня інтенсивність змінюється. Вони складаються з трьох головних компонентів: основна та найяскравіша область порівняно невелика (менше ніж 1000 км у ширину), розташована приблизно на 16° від магнітних полюсів[42]; гарячі плями — сліди магнітних силових ліній, що сполучають іоносфери супутників з іоносферою Юпітера, та області короткочасних викидів, розташованих всередині основного кільця. Викиди полярних сяйв були виявлені майже у всіх частинах електромагнітного спектра від радіохвиль до рентгенівських променів (до 3 кеВ), однак вони найяскравіші в середньому інфрачервоному діапазоні (довжина хвилі 3—4 мкм і 7—14 мкм) та глибокій ультрафіолетовій області спектра (довжина хвилі 80—180 нм).
Положення основних авроральних кілець стійке, як і їхня форма. Однак їхнє випромінювання сильно модулюється тиском сонячного вітру — чим сильніший вітер, тим слабші полярні сяйва. Стабільність сяйв підтримується великим притоком електронів, прискорюваних за рахунок різниці потенціалів між іоносферою та магнітодиском[43]. Ці електрони породжує струм, який підтримує синхронність обертання в магнітодиску. Енергія цих електронів 10 — 100 кеВ; проникаючи глибоко всередину атмосфери, вони іонізують та збуджують молекулярний водень, викликаючи ультрафіолетове випромінювання. Крім того, вони розігрівають іоносферу, чим пояснюється сильне інфрачервоне випромінювання полярних сяйв і частково нагрівання термосфери[42].
Гарячі плями пов'язані з трьома галілеєвими супутниками: Іо, Європою та Ганімедом. Вони виникають через те, що плазма, яка обертається, сповільнюється поблизу супутників. Найяскравіші плями належать Іо, оскільки цей супутник є головним поставником плазми, плями Європи та Ганімеда набагато слабші. Яскраві плями всередині основних кілець, які з'являються час від часу, ймовірно, пов'язані з взаємодією магнітосфери та сонячного вітру[42].
2016 року вчені фіксували найяскравіше полярне сяйво на Юпітері за увесь час спостережень[44].
Орбітальним телескопом «Чандра» у грудні 2000 року на полюсах Юпітера (переважно на північному полюсі) виявлене джерело пульсуючого рентгенівського випромінювання, назване Великою рентгенівською плямою. Причини цього випромінювання поки що не з'ясовані[45][46].
Внутрішню будову Юпітера можна уявити у вигляді оболонок із густиною, що зростає в напрямку до центра планети. На дні атмосфери завтовшки 1500 км розташований шар газорідкого водню завтовшки близько 7000 км. На рівні 0,88 радіуса планети, де тиск становить 0,69 Мбар, а температура — 6200 °C, водень переходить у рідкомолекулярний стан і ще через 8000 км — у рідкий металевий стан. Поряд із воднем і гелієм шари містять невелику кількість важких елементів. Внутрішнє ядро діаметром 25000 км — металосилікатне, із часткою води, аміаку й метану, оточене гелієм. Температура в центрі становить 23000 градусів, а тиск — 50 Мбар.
Вимірювання з КА підтвердили існування значного теплового потоку з надр Юпітера, хоча й трохи меншого, ніж за даними наземних спостережень. Тобто, Юпітер випромінює в космос приблизно вдвічі більше енергії, ніж одержує від Сонця. З цим пов'язано згадане перевищення ефективної температури над рівноважною. Механізм генерації внутрішнього тепла до кінця незрозумілий[джерело?]. достовірними джерелами може бути стиснення (~1 мм на рік[джерело?]), що супроводжується виділенням гравітаційної енергії; безперервний перехід молекулярного водню в металевий; «осадження» гелію з водневогелієвого розчину і дрейф гелію до центру планети.
Поширеність елементів у співвідношенні з воднем на Юпітері та Сонці[47] | |||
---|---|---|---|
Елемент | Сонце | Юпітер/Сонце | |
He/H | 0,0975 | 0,807 ± 0,02 | |
Ne/H | 1,23× 10−4 | 0,10 ± 0,01 | |
Ar/H | 3,62× 10−6 | 2,5 ± 0,5 | |
Kr/H | 1,61× 10−9 | 2,7 ± 0,5 | |
Xe/H | 1,68× 10−10 | 2,6 ± 0,5 | |
C/H | 3,62× 10−4 | 2,9 ± 0,5 | |
N/H | 1,12× 10−4 | 3,6 ± 0,5 (8 бар)
3,2 ± 1,4 (9—12 бар) | |
O/H | 8,51× 10−4 | 0,033 ± 0,015 (12 бар)
0,19—0,58 (19 бар) | |
P /H | 3,73× 10−7 | 0,82 | |
S/H | 1,62× 10−45 | 2,5 ± 0,15 |
Хімічний склад внутрішніх шарів Юпітера неможливо визначити сучасними методами спостережень, однак багато елементів у зовнішніх шарах атмосфери відомі з відносно високою точністю, оскільки зовнішні шари безпосередньо досліджувалися спускним апаратом «Галілео», який був спущений в атмосферу 7 грудня 1995 року[48]. Два основних компоненти атмосфери Юпітера — молекулярний водень і гелій[47]. Атмосфера містить також немало таких сполук, як вода, метан (CH4), сірководень (H2S), аміак (NH3) і фосфін (PH3)[47]. Їхня кількість у глибокій (нижче 10 бар) тропосфері передбачає, що атмосфера Юпітера багата вуглецем, азотом, сіркою і, можливо, киснем за фактором 2—4 відносно Сонця[47].
Інші хімічні сполуки — арсин (AsH3) і герман (GeH4) — наявні, але у невеликій кількості.
Концентрація інертних газів, аргону, криптону та ксенону, перевищує їхню кількість на Сонці (див. таблицю), а концентрація неону явно менша. Наявна незначна кількість простих вуглеводнів: етану, ацетилену та діацетилену[ru], — які формуються під дією сонячної ультрафіолетової радіації та заряджених частинок, що прибувають із магнітосфери Юпітера. Діоксид вуглецю, монооксид вуглецю та вода у верхній частині атмосфери, ймовірно, наявні завдяки зіткненню з атмосферою Юпітера комет, таких, наприклад, як комета Шумейкерів — Леві 9. Вода не може прибувати із тропосфери, тому що тропопауза, яка діє як холодна пастка, ефективно перешкоджає підняттю води до рівня стратосфери[47].
Червонуваті варіації кольору Юпітера можуть пояснюватися наявністю сполук фосфору (червоний фосфор[49]), сірки, вуглецю і, можливо, органіки, що виникає завдяки електричним розрядам в атмосфері[49]. В експерименті, який (доволі тривіально) симулює нижні шари атмосфери, що його виконав Карл Саган, у середовищі коричнуватих толінів було виявлено 4-кільцевий хризен, а переважаючими для цієї суміші є поліциклічні ароматичні вуглеводні з 4 і більше бензольними кільцями, рідше з меншою кількістю кілець[50]. Оскільки колір може сильно варіюватися, вважається, що хімічний склад атмосфери також різний у різних місцях. Наприклад, є «сухі» та «мокрі» області з різним вмістом водяної пари.
Атмосфера Юпітера водневогелієва (співвідношення цих газів за обсягом: 89 % водню й 11 % гелію). Уся видима поверхня Юпітера — щільні хмари, розташовані на висоті близько 1000 км над «поверхнею», де газоподібний стан змінюється на рідкий і утворює численні шари жовто-коричневих, червоних і блакитнуватих відтінків. Інфрачервоний радіометр показав, що температура зовнішнього хмарного покриву становить −133 °C. Конвективні потоки, що виносять внутрішнє тепло до поверхні, ззовні виявляються у вигляді світлих зон і темних поясів. На ділянках світлих зон відзначається підвищений тиск, що відповідає висхідним потокам. Хмари, що утворюють ці зони, розташовуються на вищому рівні (приблизно 20 км), а їхнє світле забарвлення пояснюється підвищеною концентрацією яскраво-білих кристалів аміаку. Темні хмари, що розташовуються нижче, складаються здебільшого з червоно-коричневих кристалів гідросульфіду амонію і мають вищу температуру. Ці структури являють собою ділянки спадних потоків. Зони та пояси мають різну швидкість руху в напрямку обертання Юпітера. Період обертання коливається від 9 год 49 хв на широті 23 градуси до 9 год 56 хв на широті 18 градусів північної ширини. Це призводить до існування стійких зональних чи плинних вітрів, що постійно дмуть вздовж екватора в одному напрямку. Швидкість у цій глобальній системі досягає від 50 до 150 м/с. На межах поясів і зон спостерігається сильна турбулентність, що приводить до утворення численних вихрових структур. Найвідомішим таким утворенням є Велика червона пляма, що спостерігається на поверхні Юпітера протягом останніх 300 років.
Швидкість вітрів на Юпітері може перевищувати 600 км/год. На відміну від Землі, де циркуляція атмосфери відбувається через різницю сонячного нагрівання в екваторіальних і полярних областях, на Юпітері вплив сонячної радіації на температурну циркуляцію незначний; головними рушійними силами є потоки тепла, що йдуть із центра планети, та енергія, що виділяється при швидкому русі Юпітера навколо власної осі[51]. Більш точно швидкість вітру в екваторіальному потоці на Юпітері, який склав 515 км/год, вдалося визначити тільки в 2023 році за допомогою космічного телескопа імені Джеймса Вебба[52][53].
Ще за наземними спостереженнями астрономи розділили пояси та зони в атмосфері Юпітера на екваторіальні, тропічні, помірні й полярні. Нагріті маси газів, що підіймаються із глибин атмосфери в зонах під дією значних на Юпітері коріолісових сил витягуються вздовж паралелей планети, причому протилежні краї зон рухаються назустріч один одному. На границях зон і поясів (області низхідних потоків) існує сильна турбулентність[54][51]. На північ від екватора потоки в зонах, направлені на північ, відхиляються коріолісовими силами на схід, а направлені на південь — на захід. У південній півкулі — відповідно, навпаки[51]. Схожу структуру на Землі мають пасати.
Над північним полюсом планети зафіксовані густі купчасті вихори та хмари[55].
Характерною особливістю зовнішнього вигляду Юпітера є його смуги. Існує ряд гіпотез, що пояснюють їхнє походження. Так, за однією з версій, смуги виникали в результаті явища конвекції в атмосфері планети-гіганта — за рахунок підігрівання і, як наслідок, підняття одних шарів і охолодження й опускання вниз інших. Навесні 2010 року вчені висунули гіпотезу, згідно з якою смуги на Юпітері виникли в результаті дії його супутників[56]. Вважається, що під дією тяжіння супутників на Юпітері сформувалися своєрідні «стовпи» речовини, які, обертаючись, і сформували смуги[56].
Конвективні потоки, що виносять внутрішнє тепло до поверхні, зовні проявляються у вигляді світлих зон і темних поясів. В області світлих зон відмічається підвищений тиск, що відповідає висхідним потокам. Хмари, що утворюють зони, розташовуються на вищому рівні (приблизно на 20 км), а їхнє світле забарвлення пояснюється, мабуть, підвищеною концентрацією яскраво-білих кристалів аміаку. Розташовані нижче темні хмари поясів складаються, ймовірно, з червоно-коричневих кристалів гідросульфіду амонію та мають вищу температуру. Ці структури є областями низхідних потоків. Зони та пояси мають різну швидкість руху в напрямку обертання Юпітера. Період обертання відрізняється на кілька хвилин залежно від широти[57]. Це призводить до існування стійких зональних течій або вітрів, які постійно дмуть паралельно екватору в одному напрямку. Швидкості в цій глобальній системі досягають від 50 до 150 м/с і вище[51]. На границях поясів і зон спостерігається сильна турбулентність, яка призводить до утворення численних вихрових структур[51][58]. Найвідомішим таким утворенням є Велика червона пляма, що спостерігається на поверхні Юпітера протягом останніх 300 років.
Виникнувши, вихор підіймає на поверхню хмар нагріті маси газу з парами малих компонентів. Утворені кристали аміачного снігу, розчинів і сполук аміаку у вигляді снігу та крапель, звичайного водяного снігу й льоду поступово опускаються в атмосфері, доки не досягають рівнів, на яких температура достатньо висока, та випаровуються. Після чого речовина в газоподібному стані знову повертається у шар хмар[51].
Влітку 2007 року телескоп «Габбл» зафіксував різкі зміни в атмосфері Юпітера. Окремі зони в атмосфері на північ і на південь від екватора перетворилися в пояси, а пояси — у зони. При цьому змінилися не лише форми атмосферних утворень, але і їхній колір[59].
9 травня 2010 року астроном-аматор Ентоні Веслі (англ. Anthony Wesley, також див. нижче) виявив, що з поверхні планети раптово зникло одне з найпомітніших і найстабільніших у часі утворень — Південний екваторіальний пояс. Саме на широті Південного екваторіального поясу розташована Велика червона пляма. Причиною раптового зникнення Південного екваторіального поясу Юпітера вважається поява над ним шару світліших хмар, які приховують смугу темних хмар[60]. За даними досліджень, виконаних телескопом «Габбл», було зроблено висновок про те, що пояс не зник повністю, а лише виявився прихований під шаром хмар, які складаються з аміаку.
Розташування смуг, їхні ширини, швидкості обертання, турбулентність і яскравість періодично змінюються[61][62][63][64]. У кожній смузі розвивається свій цикл із періодом порядку 3—6 років. Спостерігаються і глобальні коливання з періодом 11—13 років. Чисельний експеримент[65] дає підстави вважати цю змінність подібною до явища циклу індексу[ru], що спостерігається на Землі[66].
Велика червона пляма — овальне утворення зі змінними розмірами, розташоване в південній тропічній зоні. Відкрита Робертом Гуком 1664 року[26]. Станом на 2000 рік «пляма» мала розміри 15 × 30 тис. км, а сто років перед цим спостерігачі відзначали удвічі більші розміри. Іноді вона буває не дуже чітко видимою. Це довготривалий вільний вихор (антициклон) в атмосфері Юпітера, що робить повний оберт за 6 земних діб.
Завдяки дослідженням, виконаним наприкінці 2000 року зондом «Кассіні», було з'ясовано, що Велика червона пляма пов'язана з низхідними потоками (вертикальна циркуляція атмосферних мас). Хмари тут розташовані вище, а температура їх нижча, ніж в інших областях. Колір хмар залежить від висоти: сині структуру — найвищі, під ними лежать коричневі, потім білі. Червоні структуру — найнижчі[57]. Швидкість обертання Великої червоної плями становить 360 км/год[28]. Її середня температура становить −163 °C, причому між окраїнними та центральними частинами плями спостерігається різниця в температурі порядку 3—4°[67][68]. Ця відмінність, ймовірно, відповідальна за той факт, що атмосферні гази у центрі плями обертаються за годинниковою стрілкою, а на окраїнах — проти[67][68]. Також висловлено припущення про взаємозв'язок температури, тиску, руху та кольору Червоної плями, хоча як саме він здійснюється, вченим поки що складно відповісти[68].
Час від часу на Юпітері спостерігаються зіткнення великих циклонічних систем. Одне із них відбулося 1975 року, внаслідок чого червоний колір Плями посвітлішав на кілька років. Наприкінці лютого 2002 року ще один гігантський вихор — Білий овал — почав гальмуватися Великою червоною плямою, і зіткнення тривало цілий місяць[69]. Однак воно не завдало значної шкоди обидвом вихорам, оскільки відбулося по дотичній.
Червоний колір Великої червоної плями є загадкою. Однією з можливих причин можуть бути хімічні сполуки, що містять фосфор[35]. Кольори та механізми, що відповідають за вигляд усієї атмосфери Юпітера, досі ще погано зрозумілі та можуть бути пояснені лише при прямих вимірюваннях її параметрів.
1938 року було зафіксовано формування й розвиток трьох великих білих овалів поблизу 30° південної широти. Цей процес супроводжувався одночасним формуванням ще кількох маленьких білих овалів — вихорів. Це підтверджує, що Велика червона пляма є найпотужнішим із юпітеріанських вихорів. Історичні записи не виявляють подібних довгоживучих систем у середніх північних широтах планети. Спостерігалися великі темні овали поблизу 15° північної широти, але, мабуть, необхідні умови для виникнення вихорів і наступного їх перетворення у стійкі системи, подібні до Червоної плями, існують лише у південній півкулі[69].
Зафіксовано зменшення червоної плями. Зменшення бурі астрономи помітили в 1920 році, а з 2012 року зменшення бурі прискорилось[70].
Що стосується трьох вищезгаданих білих вихорів-овалів, то два з них об'єдналися 1998 року, а 2000 року вихор, який знову виник, злився з третім овалом[71]. Наприкінці 2005 року вихор (Овал ВА, англ. Oval BC) почав змінювати свій колір, набуваючи зрештою червоного забарвлення, за що отримав нову назву — Мала червона пляма[71]. У липні 2006 року Мала червона пляма зіткнулася зі своєю старшою «сестрою» — Великою червоною плямою. Тим не менше, це не мало якогось суттєвого впливу на обидва вихори — зіткнення відбулося по дотичній[71][72]. Зіткнення було передбачене ще у першій половині 2006 року[72][73].
У центрі вихору тиск виявляється вищим, ніж у навколишньому районі, а самі урагани оточені збуреннями з низьким тиском. За знімками, зробленими космічними зондами «Вояджер-1» і «Вояджер-2», було встановлено, що у центрі таких вихорів спостерігаються колосальні за розмірами спалахи блискавок протяжністю в тисячі кілометрів[51]. Потужність блискавок на три порядки перевищує земні[45].
Ще одним незрозумілим явищем є «гарячі тіні». Згідно з даними радіовимірювань, виконаних у 1960-х роках, у місцях, куди на Юпітер падають тіні від його супутників, температура помітно зростає, а не знижується, як можна було б очікувати[74].
Значний внесок у наші уявлення про формування й еволюцію зір вносять спостереження екзопланет. Так, з їхньою допомогою було встановлено риси, спільні для всіх планет, подібних до Юпітера:
Існують дві головні гіпотези, що пояснюють процеси виникнення та формування Юпітера.
Згідно з першою гіпотезою, що отримала назву гіпотези «контракції», відносна подібність хімічного складу Юпітера та Сонця (велика частка Гідрогену та Гелію) пояснюється тим, що у процесі формування планет на ранніх стадіях розвитку Сонячної системи в газопиловому диску утворилися масивні «згущення», що дали початок планетам, тобто Сонце і планети формувалися подібним чином[75]. Щоправда, ця гіпотеза не пояснює певних відмінностей у хімічному складі планет: Сатурн, наприклад, містить більше важких хімічних елементів, ніж Юпітер, а він, своєю чергою, більше, ніж Сонце[75]. Планети ж земної групи взагалі разюче відрізняються за своїм хімічним складом від планет-гігантів.
Друга гіпотеза (гіпотеза «акреції») каже, що процес утворення Юпітера, а також Сатурна, відбувався у два етапи[76]. Спочатку протягом кількох десятків мільйонів років[75] ішов процес формування твердих щільних тіл, на кшталт планет земної групи. Потім почався другий етап, коли протягом кількох сотень тисяч років тривав процес акреції газу з первинної протопланетної хмари на ці тіла, що досягнули до того моменту маси кількох мас Землі.
Ще на першому етапі з області Юпітера та Сатурна дисипувала частина газу, що викликало деякі відмінності в хімічному складі цих планет і Сонця. На другому етапі температура зовнішніх шарів Юпітера й Сатурна досягала 5000 °C і 2000 °C відповідно[75]. Уран і Нептун досягли критичної маси, необхідної для початку акреції, набагато пізніше, що вплинуло як на їхні маси, так і на хімічний склад[75].
2004 року Катарина Лоддерс з Університету Вашингтона висунула гіпотезу про те, що ядро Юпітера складається переважно з деякої органічної речовини, що має склеювальну здатність, що, своєю чергою, вплинуло на захоплення ядром речовини із навколишньої області простору. Утворене в результаті кам'яно-смоляне ядро силою свого тяжіння «захопило» газ із сонячної туманності, сформувавши сучасний Юпітер[77][78]. Ця ідея вписується в другу гіпотезу про виникнення Юпітера шляхом акреції.
Відомо, що Сонце в результаті поступового зменшення кількості свого термоядерного палива збільшує свою світність приблизно на 11 % кожних 1,1 млрд років[79], і внаслідок цього його навколозоряна зона, придатна для життя зміститься за межі сучасної земної орбіти, доки не досягне системи Юпітера. Збільшення яскравості Сонця у цей період розігріє супутники Юпітера, уможлививши вивільнення на їхній поверхні рідкої води[80], а отже, створить умови для підтримання життя. Через 7,59 мільярда років Сонце стане червоним гігантом[81]. Модель показує, що відстань між Сонцем і газовим гігантом зменшиться з 765 до 500 млн км. У таких умовах Юпітер перейде в новий клас планет, що називається «гарячі юпітери»[82]. Температура на його поверхні досягне 1000 К, що викличе темно-червоне світіння планети. Супутники стануть непридатними для підтримання життя і стануть висушеними розжареними пустелями.
Станом на червень 2017 року було відомо про 69 супутників Юпітера[83], завжди звернених до нього одним боком (внаслідок припливних сил). На липень 2018 р. кількість виявлених супутників Юпітера зросла до 79[84][7]. Станом на травень 2023 року, згідно з офіційним визначенням Міжнародного астрономічного союзу (МАС), число супутників Юпітера складає 95[2][3].
Супутники Юпітера можна розділити на декілька груп. Внутрішні супутники обертаються майже круговими орбітами, що практично лежать у площині екватора планети. Чотири найближчих до планети супутника Адрастея, Метида, Амальтея і Теба діаметром від 40 до 270 км перебувають на відстані 1—3 радіуси Юпітера й наближаються до межі Роша. Чотири наступні — найбільші, розташовані на відстані від 6 до 26 радіусів Юпітера. Їх 1610 року майже одночасно відкрили Симон Маріус[джерело?] та Галілео Галілей[85]. Їх називають галілеєвими супутниками, хоча перші таблиці руху цих супутників Іо, Європи, Ганімеда і Каллісто склав Марій.
Зовнішня група складається з маленьких (діаметром від 10 до 180 км) супутників, що рухаються витягнутими й дуже нахиленими до екватора Юпітера орбітами. Чотири ближчі до Юпітера супутники Леда, Гімалія, Лісітея, Елара рухаються в напрямку обертання Юпітера, а чотири зовнішніх супутники Ананке, Карме, Пасіфе і Сінопе рухаються у зворотному напрямку.
За допомогою наземних телескопів нового покоління групою астрономів з Астрономічного інституту Гавайського університету було відкрито ще 47 супутників Юпітера: спочатку діаметром 4—10 км (наприкінці 2000 року), потім — діаметром від 2 до 4 км (2001 рік).
До 2023 року за кількістю супутників Юпітер обганяв Сатурн, однак чисельність відомих супутників у останнього зросла до 145.
Усі великі супутники Юпітера обертаються синхронно та завжди повернуті до Юпітера одним боком внаслідок впливу потужних припливних сил планети-гіганта. При цьому Ганімед, Європа та Іо перебувають один з одним в орбітальному резонансі 4:2:1[27][86]. До того ж серед супутників Юпітера існує закономірність: чим далі супутник від планети, тим менша його густина (в Іо — 3,53 г/см³, Європи — 2,99 г/см³, Ганімеда — 1,94 г/см³, Каллісто — 1,83 г/см³)[87]. Це залежить від кількості води на супутнику: на Іо її практично немає, на Європі — 8 %, на Ганімеді й Каллісто — до половини їх маси[87][88].
Найцікавішою є Європа, що має глобальний океан, у якому не виключена можливість існування життя. Спеціальні дослідження показали, що океан простягається вглиб на 90 км, його об'єм перевищує об'єм земного Світового океану[89]. Поверхня Європи вкрита розломами та тріщинами, що виникли у крижаному панцирі супутника[89]. Висловлювалося припущення, що джерелом тепла для Європи є сам океан, а не ядро супутника. Існування підлідного океану передбачається також на Каллісто та Ганімеді[69]. Базуючись на припущенні про те, що за 1—2 млрд років кисень міг потрапити у підлідний океан, вчені теоретично передбачають наявність життя на супутнику.
Іо цікавий наявністю потужних активних вулканів; поверхня супутника залита продуктами вулканічної активності[90][91]. На фотографіях, зроблених космічними зондами, видно, що поверхня Іо має яскраво жовте забарвлення з плямами коричневого, червоного та темно-жовтого кольорів. Ці плями — продукт вивержень вулканів Іо[en], що складаються переважно з сірки та її сполук; колір вивержень залежить від їхньої температури[91].
Ганімед є найбільшим супутником не лише Юпітера, а й взагалі у Сонячній системі серед усіх супутників планет[86]. Ганімед і Каллісто покриті численними кратерами, на Каллісто багато з них оточені тріщинами[86].
На Каллісто, ймовірно, також є океан під поверхнею супутника; на це опосередковано вказує магнітне поле Каллісто, яке може бути породжене наявністю електричних струмів у солоній воді всередині супутника. Також на користь цієї гіпотези свідчить той факт, що магнітне поле у Каллісто змінюється залежно від її орієнтації на магнітне поле Юпітера, тобто існує високопровідна рідина під поверхнею цього супутника[92][93].
Інші супутники набагато менші та є скельними тілами неправильної форми. Серед них є такі, що обертаються у зворотний бік. Серед малих супутників Юпітера досить цікавою для вчених є Амальтея: ймовірно, всередині неї існує система порожнин, що виникли в результаті катастрофи, яка відбулася в далекому минулому — через метеоритне бомбардування Амальтея розпалася на частини, які потім знову з'єдналися під дією взаємної гравітації, але так і не стали єдиним монолітним тілом[94].
Метіда та Адрастея — найближчі до Юпітера супутники з діаметрами приблизно 40 і 20 км відповідно. Вони рухаються по краю головного кільця Юпітера по орбіті радіусом 128 тисяч км, роблячи оберт навколо Юпітера за 7 годин, що робить їх найшвидшими супутниками Юпітера[95].
Загальний діаметр всієї системи супутників Юпітера становить 24 млн км[96]. Ба більше, вважається, що раніше супутників у Юпітера було ще більше, але деякі з них впали на планету під дією її потужної гравітації.
Супутники Юпітера, назви яких закінчуються на «е» — Карме, Сінопе, Ананке, Пасіфе та інші (див. Група Ананке, група Карме, група Пасіфе) — обертаються навколо планети у зворотному напрямку (ретроградний рух) і, за припущеннями вчених, утворилися не разом із Юпітером, а були захоплені ним пізніше.
Деякі комети є тимчасовими супутниками Юпітера. Так, зокрема, комета Кусіди — Мурамацу[en] в період з 1949 по 1961 року була супутником Юпітера, здійснивши за цей час навколо планети два оберти[97][98]. Крім цього об'єкта відомо ще, як мінімум, про чотири тимчасових супутники планети-гіганта.
Космічний апарат «Вояджер 1» у березні 1979 року вперше сфотографував систему слабких кілець, шириною близько 1000 км і товщиною не більш 30 км, що обертаються навколо Юпітера на відстані 57 000 км від хмарного покриву планети. На відміну від кілець Сатурна, кільця Юпітера темні (альбедо (відбивна здатність) — 0,05) і, ймовірно, складаються з дуже невеликих твердих часток метеорної природи. Частки кілець Юпітера, найімовірніше, не залишаються в них довго (через перешкоди, створювані атмосферою й магнітним полем). Отже, раз кільця непостійні, то вони мають постійно поповнюватися. Невеликі супутники Метис і Адрастея, чиї орбіти лежать у межах кілець, — очевидні джерела таких поповнень. З Землі кільця Юпітера можуть бути помічені при спостереженні тільки в ІЧ-діапазоні.
Троянські астероїди — група астероїдів, розташованих у районі точок Лагранжа L4 і L5 Юпітера. Астероїди перебувають із Юпітером в орбітальному резонансі 1:1 і рухаються разом із ним по орбіті навколо Сонця[99]. При цьому існує традиція називати об'єкти, розташовані біля точки L4, іменами грецьких героїв, а біля L5 — троянських. Всього станом на березень 2017 року було відкрито 6510 таких об'єктів (4184 у точці L4 та 2326 у точці L5)[100].
Існує дві теорії, що пояснюють походження троянців. Перша стверджує, що вони виникли на кінцевому етапі формування Юпітера (розглядається акреціювальний варіант). Разом із речовиною були захоплені планетезималі, на які також відбувалася акреція, а оскільки механізм був ефективним, то половина з них опинилася в гравітаційній пастці. Недоліки цієї теорії: кількість об'єктів, що виникли таким способом, на чотири порядки більша від спостережуваної, і вони мають набагато більший нахил орбіти[101].
Друга теорія — динамічна. Через 300—500 млн років після формування Сонячної системи Юпітер і Сатурн проходили через резонанс 1:2. Це призвело до перебудови орбіт: Нептун, Плутон і Сатурн збільшили радіус орбіти, а Юпітер зменшив. Це вплинула на гравітаційну стійкість поясу Койпера, і частина астероїдів із нього «переселилася» на орбіту Юпітера. Одночасно з цим були зруйновані всі початкові троянці, якщо такі були[102].
Подальша доля троянців невідома. Ряд слабких резонансів Юпітера й Сатурна змусить їх хаотично рухатися, але яка буде ця сила хаотичного руху та чи будуть вони викинуті зі своєї сучасної орбіти, важко сказати. Крім цього, зіткнення між собою повільно, але невпинно зменшує кількість троянців. Якісь фрагменти можуть стати супутниками, а якісь — кометами[103].
У липні 1992 року до Юпітера наблизилася комета. Вона пройшла на відстані близько 15 тисяч кілометрів від верхньої межі хмар, і потужна гравітаційна дія планети-гіганта розірвала її ядро на 21 великих частин. Цей кометний рій виявили на обсерваторії Маунт-Паломар подружжя Керолін і Юджина Шумейкерів та астроном-аматор Девід Леві. 1994 року, при наступному зближенні з Юпітером, всі уламки комети врізалися в атмосферу планети[28] з величезною швидкістю — близько 64 км/с. Цей грандіозний космічний катаклізм спостерігався як із Землі, так і з допомогою космічних засобів, зокрема, з допомогою космічного телескопа «Габбл», супутника IUE[en] і міжпланетної космічної станції «Галілео». Падіння ядер супроводжувалося спалахами випромінювання в широкому спектральному діапазоні, генеруванням газових викидів і формуванням довгоживучих вихорів, зміною радіаційних поясів Юпітера та появою полярних сяйв, ослабленням яскравості плазмового тора Іо в крайньому ультрафіолетовому діапазоні[105].
19 липня 2009 року астроном-аматор Ентоні Веслі (англ. Anthony Wesley) виявив темну пляму в районі південного полюса Юпітера. Згодом цю знахідку підтвердили в обсерваторії Кека на Гаваях[106][107]. Аналіз отриманих даних вказав, що найімовірнішим тілом, що впало в атмосферу Юпітера, був кам'яний астероїд[108].
3 червня 2010 року о 20:31 за міжнародним часом два незалежних спостерігачі — Ентоні Веслі (англ. Anthony Wesley, Австралія) та Крістофер Го (англ. Christopher Go, Філіппіни) — відзняли спалах над атмосферою Юпітера, що, найімовірніше, було падінням нового, раніше не відомого тіла на Юпітер. Через добу після цієї події нові темні плями в атмосфері Юпітера не виявлені. 16 червня 2010 року НАСА опублікувало пресреліз, у якому повідомлялося, що на знімках, отриманих на космічному телескопі «Габбл» 7 червня 2010 року (через 4 доби після фіксації спалаху), не виявлено ознак падіння у верхніх шарах атмосфери Юпітера[109].
20 серпня 2010 року, о 18:21:56 за міжнародним часом, відбувся спалах над хмарним покривом Юпітера, який виявив японський астроном-аматор Масаюки Татікава з префектури Кумамото на зробленому ним відеозаписі. Наступного дня після оголошення про цю подію знайшлося підтвердження від незалежного спостерігача Аоки Кадзуо (Aoki Kazuo) — аматора астрономії з Токіо. Ймовірно, це могло бути падіння астероїда чи комети в атмосферу планети-гіганта[110][111][112][113][114].
Астроном-аматор Герріт Кернбауер (Gerrit Kernbauer) 17 березня 2016 року на 20-сантиметровому телескопі зробив знімки зіткнення Юпітера з космічним об'єктом (ймовірно, кометою). На думку астрономів, у результаті зіткнення відбувся колосальний викид енергії, рівний 12,5 мегатонни в тротиловому еквіваленті[115].
29 серпня 2023 року, о 01:45 (за японським стандартним часом) або ж 28 серпня (16:45 GMT), згідно з дописом в обліковому записі, що пов'язаний з проєктом Organized Autotelescopes for Serendipitous Event Survey (OASES) і системою Planetary Observation Camera for Optical Transient Surveys (PONCOTS), було повідомлено про спалах, який спостерігався в атмосфері Юпітера. Пізніше MASA Planetary Log оприлюднив кадри, на яких показано короткий спалах світла, що йде від Юпітера, який був пов'язаний з очевидним ударом комети чи астероїда[116].
Юпітер вивчався лише апаратами НАСА.
1973 і 1974 біля Юпітера пролетіли «Піонер-10» і «Піонер-11»[57] на відстані (від хмар) 132 тис. км і 43 тис. км відповідно. Апарати передали декілька сотень знімків (невисокої роздільності) планети й галілеєвих супутників, вперше виміряли основні параметри магнітного поля та магнітосфери Юпітера, були уточнені маса й розміри супутника Юпітера — Іо[57][69]. Також саме під час прольоту повз Юпітер апарата «Піонер-10» з допомогою апаратури, встановленої на ньому, вдалося виявити, що енергія, яка випромінюється Юпітером у космічний простір, більша за енергію, яку він отримує від Сонця[57].
1979 року біля Юпітера пролетіли «Вояджери»[117] (на відстані 207 тис. км і 570 тис. км). Вперше були отримані знімки високої роздільності планети та її супутників (всього було передано близько 33 тис. фотографій), були виявлені кільця Юпітера; апарати також передали велику кількість інших даних, зокрема відомості про хімічний склад атмосфери, дані про магнітосферу та ін.[69]; також було отримано («Вояджером-1») дані про температуру верхніх шарів атмосфери[118].
1992 року повз планету пролетів «Улісс» на відстані 900 тис. км. Апарат виконав вимірювання магнітосфери Юпітера («Улісс» призначений для вивчення Сонця та не має фотокамер).
З 1995 по 2003 рік на орбіті Юпітера працював космічний апарат «Галілео»[57][32]. Хоча головна антена «Галілео» не розкрилася (внаслідок чого потік даних склав лише 1 % від потенційно можливого), тим не менш, усі основні завдання було виконано. У місії було отримано багато нових даних. Зокрема, спускний апарат вперше вивчив атмосферу газової планети зсередини. Багато знімків із високою роздільністю та дані інших вимірювань дали змогу детально вивчити динаміку атмосферних процесів Юпітера, а також зробити нові відкриття, що стосувалися його супутників. 1994 року з допомогою «Галілео» вчені змогли спостерігати падіння на Юпітер уламків комети Шумейкерів — Леві 9[90].
2000 року повз Юпітер пролетів «Кассіні». Він зробив ряд фотографій планети з рекордною (для масштабних знімків) роздільністю та отримав нові дані про плазмовий тор Іо. За знімками «Кассіні» було складено кольорові «карти» Юпітера, на яких розмір найдрібніших деталей становить 120 км. При цьому було виявлено деякі незрозумілі явища, як, наприклад, загадкова темна пляма у північних приполярних районах Юпітера, видима лише в ультрафіолетовому світлі[119]. Також було виявлено величезну хмару газу вулканічного походження, що простягалася від Іо у відкритий космос на відстань близько 1 а. о. (150 млн км)[119]. Крім того, було поставлено унікальний експеримент із вимірювання магнітного поля планети одночасно з двох точок («Кассіні» та «Галілео»).
28 лютого 2007 року в околицях Юпітера (на шляху до Плутона) здійснив гравітаційний маневр апарат «Нові обрії»[57][120]. Він виконав знімання планети й супутників[121][122], на Землю було передано дані в обсязі 33 гігабайт[123][124].
Зонд | Дата прольоту | Відстань |
---|---|---|
Піонер-10 | 03.12.1973 | 130 000 км |
Піонер-11 | 04.12.1974 | 34 000 км |
Вояджер-1 | 05.03.1979 | 349 000 км |
Вояджер-2 | 09.09.1979 | 570 000 км |
Улісс | 08.02.1992 | 409 000 км |
04.02.2004 | 120 000 000 км | |
Кассіні | 30.12.2000 | 10 000 000 км |
Нові обрії | 28.02.2007 | 2 304 535 км |
У серпні 2011 року було запущено апарат «Юнона», який вийшов на полярну орбіту Юпітера в липні 2016 року[125] і мав виконати детальні дослідження планети[126][127]. Така орбіта — не вздовж екватора планети, а від полюса до полюса — дасть, на думку вчених, змогу краще вивчити природу полярних сяйв на Юпітері[127].
Через можливу наявність підземних рідких океанів на супутниках планети — Європі, Ганімеді та Каллісто — є зацікавленість у вивченні саме цього явища. Однак фінансові проблеми й технічні труднощі призвели до скасування на початку XXI століття перших проєктів їх дослідження — американських Europa Orbiter[en] (з висадкою на Європу апаратів кріобота для роботи на крижаній поверхні та гідробота для запуску в підповерхневому океані) та Jupiter Icy Moons Orbiter, а також європейського Jovian Europa Orbiter.
На 2020 рік НАСА та ЄКА планують міжпланетну місію з вивчення галілеєвих супутників Europa Jupiter System Mission (EJSM). У лютому 2009 року ЄКА оголосило про пріоритет проєкту з дослідження Юпітера перед іншим проєктом — з дослідження супутника Сатурна — Титана (Titan Saturn System Mission)[128][129][130]. Однак, місію EJSM не скасовано. У її межах НАСА планує побудувати апарат, який призначено для досліджень планети-гіганта та її супутників Європи й Іо — Jupiter Europa Orbiter. ЄКА планує надіслати до Юпітера станцію для дослідження його супутників Ганімеда й Каллісто — Jupiter Ganymede Orbiter. Запуск обох космічних роботів заплановано на 2020 рік. Досягти Юпітера вони мають 2026 року і працюватимуть там три роки[130][131]. Обидва апарати будуть запущені в межах проєкту Europa Jupiter System Mission[132]. Крім того, у місії EJSM можлива участь Японії з апаратом Jupiter Magnetospheric Orbiter (JMO) для досліджень магнітосфери Юпітера. У межах місії EJSM Роскосмосом та ЄКА також заплановано запуск ще одного апарата — (Лаплас — Європа П[en]) для посадки на Європу.
У червні 2021 року НАСА обрало компанію SpaceX для надання послуг з запуску першої місії землі для проведення докладних досліджень супутника Юпітера, Європи. Місія Europa Clipper буде запущена в жовтні 2024 року за допомогою ракети Falcon Heavy з Космічного центру ім. Джона Кеннеді в штаті Флорида[133][134].
У жовтні 2021 ракета-носій Atlas V 401 відправила на Юпітер космічний апарат НАСА «Люсі» (Lucy) вартістю майже 1 млрд доларів, зібраний компанією Lockheed Martin[135][136][137].
У лютому 2022 космічна обсерваторія НАСА NuSTAR виявила високоенергетичне випромінювання на Юпітері. Протягом близько 30 років досліджень такого не вдавалося зафіксувати[138][139].
За допомогою телескопа «Габбл» було отримано перші знімки полярних сяйв на Юпітері в ультрафіолетовому діапазоні[140], зроблені фотографії зіткнення з планетою уламків комети Шумейкерів — Леві 9 (також див. нижче), виконано спостереження за вихорами на Юпітері[141], а також кілька інших досліджень.
При спостереженні Юпітера у 80-міліметровий телескоп можна розрізнити ряд деталей: смуги з нерівними границями, витягнуті в широтному напрямку, темні та світлі плями[142]. Телескоп з апертурою від 150 мм покаже Велику червону пляму й деталі в поясах Юпітера. Малу червону пляму можна помітити в телескоп від 250 мм із ПЗЗ-камерою. Один повний оберт планета здійснює за період від 9 год 50 хв (на екваторі планети) до 9 год 55,5 хв (на полюсах). Це обертання дає спостерігачеві змогу побачити всю планету за одну ніч.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.